Probiotics in Action: Enhancing Immunity and Combatting Diseases for Optimal Health

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida - 201306, Uttar Pradesh ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida - 201306, Uttar Pradesh ,IN
  • School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144001, Punjab ,IN

DOI:

https://doi.org/10.18311/jnr/2024/35894

Keywords:

Antimicrobial  Peptides, Fungal Infections, Mycotoxins, Probiotics, Waterborne Pathogens

Abstract

This review offers an in-depth examination of the mechanisms underlying the microbiome's defense against viral infections, with a specific focus on probiotic interventions. Mycotoxins, secondary compounds produced by microfungi, pose significant health risks. Yet, certain strains of Lactic Acid Bacteria (LAB) have exhibited remarkable efficacy in eliminating aflatoxin B1 (AFB1), the most toxic member of the aflatoxin family. Experimental setups demonstrated AFB1 binding to specific LAB strains, persisting even after gastric digestion. Laboratory studies revealed a potential protective mechanism wherein pre-incubation of probiotics with mycotoxins reduced their adhesion to mucus. Animal trials further underscored the benefits of oral probiotic administration, showcasing increased fecal excretion of mycotoxins and mitigation of associated health risks. Cyanobacteria-generated microcystins in drinking water pose a significant threat to human health. Probiotic bacteria, particularly strains like Bifidobacterium longum and Lactobacillus rhamnosus, have demonstrated exceptional efficacy in removing the cyanobacterial peptide toxin microcystin-LR. Optimized conditions resulted in rapid toxin elimination, highlighting the potential of probiotics in water purification. Engineered probiotics represent a cutting-edge approach to tailor microorganisms for specific therapeutic applications, exhibiting promise in treating metabolic disorders, Alzheimer's disease, and type 1 diabetes. Additionally, they serve as innovative diagnostic tools, capable of detecting pathogens and inflammation markers within the body. In the realm of antimicrobial peptide production, probiotics offer a promising platform, with genetically modified strains engineered to produce human β-defensin 2 (HBD2) for treating Crohn's disease, showcasing their potential in targeted theurapetic delivery. Biocontainment strategies have been implemented to prevent unintended environmental impacts.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-06-30

How to Cite

Singh, A., Mazumder, A., Das, S., Tyagi, P. K., & Chaitanya, M. V. N. L. (2024). Probiotics in Action: Enhancing Immunity and Combatting Diseases for Optimal Health. Journal of Natural Remedies, 24(6), 1153–1167. https://doi.org/10.18311/jnr/2024/35894

Issue

Section

Review Articles

Categories

Received 2023-12-14
Accepted 2024-04-22
Published 2024-06-30

 

References

Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019; 8(3):92. https://doi.org/10.3390/foods8030092

Kanda A, Mazumder A, Das S, Prabhakar V. A review on probiotic and microbiota modulation: A promising nutraceutical in the management of neurodegenerative and psychiatric conditions. J Nat Remedies. 2023; 23(4):1209-22. https://doi.org/10.18311/jnr/2023/33944

Li L, Han Z, Niu X, Zhang G, Jia Y, Zhang S et al. Probiotic supplementation for prevention of atopic dermatitis in infants and children: A systematic review and meta-analysis. Am J Clin Dermatol. 2019; 20(3):367-77. https://doi.org/10.1007/s40257-018-0404-3

O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017; 2:17057. https://doi.org/10.1038/nmicrobiol.2017.57

Aggarwal N, Breedon AME, Davis CM, Hwang IY, Chang MW. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol. 2020; 65:171-9. https://doi.org/10.1016/j.copbio.2020.02.016

Garcia VG, Knoll LR, Longo M, Novaes VC, Assem NZ, Ervolino E et al. Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Periodont Res. 2016; 51(1):26-37. https://doi.org/10.1111/jre.12274

Safari R, Adel M, Lazado CC, Caipang CM, Dadar M. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol. 2016; 52:198-205. https://doi.org/10.1016/j.fsi.2016.03.020

Fang K, Jin X, Hong SH. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity. Deg P Sci Rep. 2018; 8(1):4939. https://doi.org/10.1038/s41598-018-23180-1

Sola-Oladokun B, Culligan EP, Sleator RD. Engineered probiotics: applications and biological containment. Annu Rev Food Sci Technol. 2017; 8:353-70. https://doi.org/10.1146/annurev-food-030216-030256

McFarland LV, Evans CT, Goldstein EJC. Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front Med (Lausanne). 2018; 5:124. https://doi.org/10.3389/fmed.2018.00124

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017; 14(8):491-502. https://doi.org/10.1038/nrgastro.2017.75

Gu J, Thomas-Ahner JM, Riedl KM, Bailey MT, Vodovotz Y, Schwartz SJ, et al. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Mol Nutr Food Res. 2019; 63(8):e1800636. https://doi.org/10.1002/mnfr.201800636

Cockburn DW, Koropatkin NM. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol. 2016; 428(16):3230-52. https://doi.org/10.1016/j.jmb.2016.06.021

Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, et al. Mechanisms of action of prebiotics and their effects on gastrointestinal disorders in adults. Nutrients. 2020; 12(4):1037. https://doi.org/10.3390/nu12041037

Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017; 61(1):1600240. https://doi.org/10.1002/mnfr.201600240

Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. Probiotics, prebiotics, and Synbiotics: safe options for next-generation therapeutics. Appl Microbiol Biotechnol. 2022; 106(2):505-21. https://doi.org/10.1007/s00253-021-11646-8

Vázquez-Rodríguez B, Santos-Zea L, Heredia-Olea E, Acevedo-Pacheco L, Santacruz A, Gutiérrez-Uribe JA, et al. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressed on human gut microbiota composition using an in vitro colonic model. J Funct Foods. 2021; 84:104596. https://doi.org/10.1016/j.jff.2021.104596

Liu Z, Yan C, Lin X, Ai C, Dong X, Shao L, et al. Responses of the gut microbiota and metabolite profiles to sulfated polysaccharides from sea cucumber in humanized microbiota mice. Food Funct. 2022; 13(7):4171-83. https://doi.org/10.1039/D1FO04443E

Pacheco-Ordaz R, Wall-Medrano A, Goñi MG, Ramos-Clamont-Montfort G, Ayala-Zavala JF, González-Aguilar GA. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol. 2018; 66(1):25-31. https://doi.org/10.1111/lam.12814

Lian Z, Zhang Q, Xu Y, Zhou X, Jiang K. Biorefinery cascade processing for converting corncob to Xylo oligosaccharides and glucose by maleic acid pretreatment. Appl Biochem Biotechnol. 2022; 194(10):4946-58. https://doi.org/10.1007/s12010-022-03985-7

Li S, Heng X, Guo L, Lessing DJ, Chu W. Lessing, and Chu, SCFAs improve disease resistance via modulating gut microbiota, enhance immune response, and increase antioxidative capacity in the host. Fish Shellfish Immunol. 2022; 120:560-68. https://doi.org/10.1016/j.fsi.2021.12.035

Siddiqui MT, Cresci GAM. The immunomodulatory functions of butyrate. J Inflam Res. 2021; 14:6025-41. https://doi.org/10.2147/JIR.S300989

You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, et al. The promotion mechanism of prebiotics for probiotics: a review. Front Nutr. 2022; 9:1000517. https://doi.org/10.3389/fnut.2022.1000517

Hu Y, Yan B, Stephen Chen Z, Wang L, Tang, Caoxing Huang W. Recent technologies for the extraction and separation of polyphenols in different plants: a review. J Renew Mater. 2022; 10(6):1471-90. https://doi.org/10.32604/jrm.2022.018811

Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. Faecali bacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 2017; 11(4):841-52. https://doi.org/10.1038/ismej.2016.176

Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N, Shimoni E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int. 2010; 43(1):193-202. https://doi.org/10.1016/j.foodres.2009.09.028

Savedboworn W, Kerdwan N, Sakorn A, Charoen R, Tipkanon S, Pattayakorn K. Role of protective agents on the viability of probiotic Lactobacillus plantarum during freeze-drying and subsequent storage. Int Food Res J. 2017; 2:787-94.

Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G. Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab. 2019; 74(2):115-24. https://doi.org/10.1159/000496426

Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 2019; 103(16):6463-72. https://doi.org/10.1007/s00253-019-09978-7

Vlasova AN, Takanashi S, Miyazaki A, Rajashekara G, Saif LJ. How the gut microbiome regulates host immune responses to viral vaccines. Curr Opin Virol. 2019; 37:16-25. https://doi.org/10.1016/j.coviro.2019.05.001

Wang X, Zhang P, Zhang X. Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules. 2021; 26(19):6076. https://doi.org/10.3390/molecules26196076

Galdeano CM, Perdigón G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 2006; 13(2):219-26. https://doi.org/10.1128/CVI.13.2.219-226.2006

Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 2023; 12(1):184. https://doi.org/10.3390/cells12010184

Kajander K, Hatakka K, Poussa T, Färkkilä M, Korpela R. A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther. 2005; 22(5):387-94. https://doi.org/10.1111/j.1365-2036.2005.02579.x

Park MS, Kwon B, Ku S, Ji GE. The efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 probiotic treatment in infants with rotavirus infection. Nutrients. 2017; 9(8):887. https://doi.org/10.3390/nu9080887

Harper A, Vijayakumar V, Ouwehand AC, Ter Haar J, Obis D, Espadaler J, et al. Viral infections, the microbiome, and probiotics. Front Cell Infect Microbiol. 2020; 10:596166. https://doi.org/10.3389/fcimb.2020.596166

Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, et al. How probiotics affect the microbiota. Front Cell Infect Microbiol. 2019; 9:454. https://doi.org/10.3389/fcimb.2019.00454

Sinkevičienė J, Marcinkevičienė A, Baliukonienė V, Jovaišienė J. Fungi and mycotoxins in fresh bee pollen. Rural Development 2019. Proceedings of the international scientific conference. Rural Development 2020; 2019; 1:69-72. https://doi.org/10.15544/RD.2019.004

Hernandez-Mendoza A, Garcia HS, Steele JL. Screening of Lactobacillus casei strains for their ability to bind aflatoxin b1. Food Chem Toxicol. 2009; 47(6):1064-8. https://doi.org/10.1016/j.fct.2009.01.042

Vinderola G, Ritieni A. Role of probiotics against mycotoxins and their deleterious effects. J Food Res. 2015; 4(1). https://doi.org/10.5539/jfr.v4n1p10

Catherine A, Bernard C, Spoof L, Bruno M. Microcystins and nodularins. Handbook of cyanobacterial monitoring and cyanotoxin analysis. 2016; 107-26. https://doi.org/10.1002/9781119068761.ch11

Nybom SMK, Collado MC, Surono IS, Salminen SJ, Meriluoto JAO. Effect of glucose in the removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk. J Agric Food Chem. 2008; 56(10):3714-20. https://doi.org/10.1021/jf071835x

Nybom SMK, Salminen SJ, Meriluoto JAO. Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiol Lett. 2007; 270(1):27-33. https://doi.org/10.1111/j.1574-6968.2007.00644.x

Nybom SMK, Salminen SJ, Meriluoto JAO. Specific strains of probiotic bacteria are efficient in the removal of several different cyanobacterial toxins from solution. Toxicon. 2008; 52(2):214-20. https://doi.org/10.1016/j.toxicon.2008.04.169

Salminen S, Nybom S, Meriluoto J, Collado MC, Vesterlund S, El-Nezami H. Interaction of probiotics and pathogens—benefits to human health? Curr Opin Biotechnol. 2010; 21(2):157-67. https://doi.org/10.1016/j.copbio.2010.03.016

Ma J, Lyu Y, Liu X, Jia X, Cui F, Wu X, et al. Engineered probiotics. Microb Cell Factories. 2022; 21(1):72. https://doi.org/10.1186/s12934-022-01799-0

Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019; 11(475):eaau7975. https://doi.org/10.1126/scitranslmed.aau7975

Cecarini V, Bonfili L, Gogoi O, Lawrence S, Venanzi FM, Azevedo V, et al. Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer's disease: a pre-clinical study. Aging. 2020; 12(16):15995-6020. https://doi.org/10.18632/aging.103900

Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, et al. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes. 2014; 63(8):2876-87. https://doi.org/10.2337/db13-1236

Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018; 10(445):eaa02586. https://doi.org/10.1126/scitranslmed.aao2586

Riedel CU, Casey PG, Mulcahy H, O'Gara F, Gahan CG, Hill C. Construction of p16Slux, a novel vector for improved bioluminescent labeling of gram-negative bacteria. Appl Environ Microbiol. 2007; 73(21):7092-5. https://doi.org/10.1128/AEM.01394-07

Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, et al. Programmable probiotics for detection of cancer in urine. Sci Transl Med. 2015; 7(289):289ra84. https://doi.org/10.1126/scitranslmed.aaa3519

McKay R, Hauk P, Quan D, Bentley WE. Development of cell-based sentinels for nitric oxide: ensuring marker expression and unimodality. ACS Synth Biol. 2018; 7(7):1694-701. https://doi.org/10.1021/acssynbio.8b00146

Riglar DT, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, et al. Long-term monitoring of inflammation in the mammalian gut using programmable commensal bacteria. Bio Rxiv. 2016. https://doi.org/10.1101/075051

Zhou Z, Chen X, Sheng H, Shen X, Sun X, Yan Y, et al. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microb Cell Factories. 2020; 19(1):56. https://doi.org/10.1186/s12934-020-01318-z

Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016; 6S.A.:194. https://doi.org/10.3389/fcimb.2016.00194

Kleinkauf H, Von Döhren H. Peptide antibiotics. In: Biotechnology, second, completely. reved. Vol.7: Products of Secondary Metabolism. Wiley. 2008; 277-322. https://doi.org/10.1002/9783527620890.ch7

Palmer JD, Piattelli E, McCormick BA, Silby MW, Brigham CJ, Bucci V. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect Dis. 2018; 4(1):39-45. https://doi.org/10.1021/acsinfecdis.7b00114

Forkus B, Ritter S, Vlysidis M, Geldart K, Kaznessis YN. Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts. Sci Rep. 2017; 7:40695. https://doi.org/10.1038/srep40695

Geldart K, Forkus B, McChesney E, McCue M, Kaznessis YN. pMPES: A modular peptide expression system for the delivery of antimicrobial peptides to the site of gastrointestinal infections using probiotics. Pharmaceuticals (Basel). 2016; 9(4). https://doi.org/10.3390/ph9040060

Luong HX, Thanh TT, Tran TH. Antimicrobial peptides–Advances in the development of therapeutic applications. Life Sciences. 2020; 260:118407. https://doi.org/10.1016/j.lfs.2020.118407

Lee JW, Chan CTY, Slomovic S, Collins JJ. Next-generation biocontainment systems for engineered organisms. Nat Chem Biol. 2018; 14(6):530-7. https://doi.org/10.1038/s41589-018-0056-x

Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol. 2006; 4(6):754-9. https://doi.org/10.1016/j.cgh.2006.03.028

Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Tuma RB, et al. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 2019; 37(1):100-15. https://doi.org/10.1016/j.tibtech.2018.09.005

Zhang G, Brokx S, Weiner JH. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol. 2006; 24(1):100-4. https://doi.org/10.1038/nbt1174

Qiao N, Du G, Zhong X, Sun X. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. 2021; 1(2):20210026. https://doi.org/10.1002/EXP.20210026

Antunes LC, Ferreira RB, Lostroh CP, Greenberg EP. A mutational analysis defines Vibrio fischeri LuxR binding sites. J Bacteriol. 2008; 190(13):4392-7. https://doi.org/10.1128/JB.01443-07

Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017; 8(1):15028. https://doi.org/10.1038/ncomms15028

Bintsis T. Lactic acid bacteria as starter cultures: an update in their metabolism and genetics. AIMS Microbiol. 2018; 4(4):665-84. https://doi.org/10.3934/microbiol.2018.4.665

Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016; 100(7):2939-51. https://doi.org/10.1007/s00253-016-7343-9

Tanhaeian A, Mirzaii M, Pirkhezranian Z, Sekhavati MH. Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation. BMC Biotechnol. 2020; 20(1):19. https://doi.org/10.1186/s12896-020-00612-3

Jain S, Chatterjee A, Panwar S, Yadav AK, Majumdar RS, Kumar A. Metabolic engineering approaches for improvement of probiotics functionality. In: Advances in probiotics for sustainable food and medicine. 2021; 225-40. https://doi.org/10.1007/978-981-15-6795-7_10

Ravn P, Arnau J, Madsen SM, Vrang A, Israelsen H. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology (Reading). 2003; 149(8):2193-201. https://doi.org/10.1099/mic.0.26299-0

Most read articles by the same author(s)

1 2 > >>