GC-MS Profiling of Secondary Metabolites in Hexane and Ethyl Acetate Crude Extracts of Red Sea Soft Coral Xenia macrospiculata

Jump To References Section

Authors

  • Department of Food Science and Technology, Hamelmalo Agricultural College, Keren, Anseba Region - 397 ,ER
  • ,IN

DOI:

https://doi.org/10.18311/ti/2024/v31i3/43527

Abstract

Soft corals are macro-invertebrates found in marine ecosystems. The genus Xenia belongs to the family Xeniidae containing ninety-eight species, rich sources of bioactive natural products including terpenoids, steroids, and fatty acids. The hexane and ethyl acetate solvent extracts of soft coral Xenia macrospiculata Gohar, 1940 (X. macrospiculata) were investigated for the novel chemical constituents using Gas Chromatography-Mass Spectroscopy (GC-MS). Qualitative analysis of soft coral crude extracts has shown various compounds with high and low molecular weights. In the hexane extracts twentyfive compounds were identified including sesquiterpene derivatives (34.61%), steroid derivatives (30.76%), cyclic diterpenes (7.69%), oxygenated terpenes (7.69%), fatty esters (7.69%), mercaptans (3.84%), alcohols (3.84%), and bicyclic monoterpenes (3.84%). In ethyl acetate extract twenty compounds were identified, the major compounds are fatty acid derivatives (28.57%), element type sesquiterpenes (23.80%), steroid derivatives (19.04%), thio compounds (9.52%), alkaloids (4.76%), diterpenes (4.76%), alcohols (4.76%), Fluro-hydrocarbons (4.76%). GC-MS profiling of hexane and ethyl acetate extracts of X. macrospiculata revealed the presence of several potential bioactive compounds. The elemene, azulene, himachalene and aromadendrane sesquiterpenoids are unique compounds reported first in the soft coral X. macrospiculata. The available literature supports that these compounds have potential antioxidant, Tumour Necrosis Factor (TNF) inhibition and cytotoxic activity. Some compounds are used as tasteful natural sweeteners and some of the fatty ester derivatives are potential flavouring agents in food industries.

Downloads

Download data is not yet available.

Published

2024-08-05

How to Cite

Kasimala, M., & Bollikolla, H. B. (2024). GC-MS Profiling of Secondary Metabolites in Hexane and Ethyl Acetate Crude Extracts of Red Sea Soft Coral <i>Xenia macrospiculata</i>. Toxicology International, 31(3), 399–408. https://doi.org/10.18311/ti/2024/v31i3/43527
Received 2024-04-10
Accepted 2024-05-18
Published 2024-08-05

 

References

Parvataneni R, Vadali L, Laatsch H. Chemical constituents of a marine soft coral of the genus Lobophytum. Chem Pharm Bull. 2004; 52(11):1345-8. https://doi.org/10.1248/cpb.52.1345 PMid:15516760 DOI: https://doi.org/10.1248/cpb.52.1345

Rokkarukala S, Chander MP, Mohanraju R. GC-MS analysis and antibacterial properties of the selected soft corals from South Andaman, India. Bangladesh J Pharmacol. 2023; 18:72-4.

Ermolenko VE, Imbs BA, Gloriozova AT, Poroikov VV, Sikorskaya VT, Dembitsky MV. Chemical diversity of soft coral steroids and their pharmacological activities. Mar Drugs. 2020; 18:613. https://doi.org/10.3390/md18120613 PMid:33276570 PMCid: PMC7761492 DOI: https://doi.org/10.3390/md18120613

Sang TV, Dat HTT, Vinh BL, Cuong VCL, Oanh TTP, Ha H, et al. Coral and coral-associated microorganisms: a prolific source of potential bioactive natural products. Mar Drugs. 2019; 17:468. https://doi.org/10.3390/md17080468 PMid:31405226 PMCid: PMC6723858 DOI: https://doi.org/10.3390/md17080468

Su J, Huang C, Li P, Lu Y, Wen Z, Kao Y, et al. Bioactive cadinane-type compounds from the soft coral Sinularia scabra. Arch Pharm Res. 2012; 35(5):779-84. https://doi.org/10.1007/s12272-012-0503-2 PMid:22644845 DOI: https://doi.org/10.1007/s12272-012-0503-2

Slattery M, McClintock BJ, Heine NJ. Chemical defences in Antarctic soft corals: Evidence for antifouling compounds. J Exp Mar Biol Ecol. 1995; 190:61-77. https://doi.org/10.1016/0022-0981(95)00032-M DOI: https://doi.org/10.1016/0022-0981(95)00032-M

Zhang D, Wang Z, Han X, Li X, Lu Z, Dou B, et al. Four bioactive new steroids from the soft coral Lobophytum pauciflorum were collected in the South China Sea. Beilstein J Org Chem. 2022; 18:374-80. https://doi.org/10.3762/bjoc.18.42 PMid:35495775 PMCid: PMC9016341 DOI: https://doi.org/10.3762/bjoc.18.42

Kasimala M, Mogos GG, Negasi KT, Bereket GA, Abdu MM, Melake HS. Biochemical composition of selected seaweeds from intertidal shallow waters of Southern Red Sea, Eritrea. Indian J Geo-Marine Sci. 2019; 49(07):1153-7.

Jahajeeah D, Bhoyroo V, Ranghoo-Sanmukhiya M. A review of soft corals (Octocorallia: Alcyonacea) and their symbionts: distribution of clades and functionality. WIO J Marine Sci. 2020; 19(1):123-41. https://doi.org/10.4314/wiojms.v19i1.10 DOI: https://doi.org/10.4314/wiojms.v19i1.10

EL-Shahid AZ, Ahmed KE, EL-Azeem AME, Abdel-Aziz SM, EL-Hady AKF. Antioxidant activity index of sponge and soft corals-associated fungi of the Red Sea, Egypt. Middle East J Appl Sci. 2018; 8(3):1035-45.

Kasimala M, Hari Babu B, Awet BA, Henok GG, Haile AH, Hisham OM. A review on bioactive secondary metabolites of soft corals (Octocorallia) and their distribution in Eritrean coast of Red Sea. Indian J Geo-Marine Sci. 2020; 49(12):1793-800.

Koido T, Imahara Y, Fukami H. Xenia konohana sp. nov. (Cnidaria, Octocorallia, Alcyonacea), a new soft coral species in the family Xeniidae from Miyazaki, Japan. Zookeys. 2022; 1085:29-49. https://doi.org/10.3897/zookeys.1085.77924 PMid:35210904 PMCid: PMC8831390 DOI: https://doi.org/10.3897/zookeys.1085.77924

Fabricious K, Aldersdale P. Soft corals and sea fans: A comprehensive guide to the shallow-water genera of the Central West Pacific, the Indian Ocean and the Red Sea. Townsville, Australia: Australian Institute of Marine Sci; 2001. p. 53.

Benayahu Y, Loya Y. Life history studies on the Red Sea soft coral X. macrospiculata Goha, 1940. I Annual dynamics of gonadal development. Biol Bulletin. 1984; 166:32-43. https://doi.org/10.2307/1541428 DOI: https://doi.org/10.2307/1541428

Reinicke BG. Xeniidae (Coelenterata: Octocorallia) of the Red Sea, with descriptions of six new species of Xenia. Fauna of Saudi Arabia. 1997; 16:5-62.

Alarif MW, Ghandourah AM, Abdel-Lateff A, Bawakid ON, Alotaibi AA, Alfaifi YM, et al. Two new xeniolide diterpenes from the soft coral Xenia umbellata; displayed anti-proliferative effects. Phcog Mag. 2020; 16:774-9. https://doi.org/10.4103/pm.pm_300_20 DOI: https://doi.org/10.4103/pm.pm_300_20

Groweiss A, Kashman Y. Xeniculin, xeniaphyllenol and xeniaphyllenol oxide, new diterpenoids from the soft-coral X. macrospiculata. Tetrahedron Lett. 1978; 25:2205-8. https://doi.org/10.1016/S0040-4039(01)86846-5 DOI: https://doi.org/10.1016/S0040-4039(01)86846-5

Groweiss A, Kashman Y. Eight new xenia diterpenoids from three soft corals of the Red Sea. Tetrahedron. 1983; 39:3385-96. https://doi.org/10.1016/S0040-4020(01)91590-X DOI: https://doi.org/10.1016/S0040-4020(01)91590-X

Ng S, Phan C, Ishii T, Kamada T, Hamada T, Vairappan SC. Terpenoids from marine soft coral of the genus Xenia from 1977 to 2019. Molecules. 2020; 25:5386-404. https://doi.org/10.3390/molecules25225386 PMid:33217924 PMCid: PMC7698640 DOI: https://doi.org/10.3390/molecules25225386

Hegazy FEM, Mohamed AT, Alhammady AM, Shaheen MA, Reda HE, Elshamy IA, et al. Molecular architecture and biomedical leads of terpenes from Red Sea marine invertebrates. Mar Drugs. 2015; 13:3154-81. https://doi.org/10.3390/md13053154 PMid:26006713 PMCid: PMC4446624 DOI: https://doi.org/10.3390/md13053154

Yagi S, Babiker R, Tzanova T, Schohn H. Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pacific J of Trop Med. 2016; 9(8):763-70. https://doi.org/10.1016/j.apjtm.2016.06.009 PMid:27569885 DOI: https://doi.org/10.1016/j.apjtm.2016.06.009

Awad BA, Fink SC. Phytosterols as anticancer dietary components: Evidence and mechanism of action. J Nutr. 2000; 130:2127-30. https://doi.org/10.1093/jn/130.9.2127 PMid:10958802 DOI: https://doi.org/10.1093/jn/130.9.2127

Abd-ElGawad MA, El Gendy GEA, Assaeed MA, Al-Rowaily LS, Omer AL, Dar AB, et al. Essential oil enriched with oxygenated constituents from the invasive plant Argemone ochroleuca exhibited potent phytotoxic effects. Plants. 2020; 9:998-1011. https://doi.org/10.3390/plants9080998 PMid:32764481 PMCid: PMC7464584 DOI: https://doi.org/10.3390/plants9080998

Abd-ElGawad A, El-Gendy EA, El-Amier Y, Gaara A, Omer E, Al-Rowaily S, et al. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale. Saudi J of Biological Sci. 2020; 27:1900-6. https://doi.org/10.1016/j.sjbs.2020.04.018 PMid:32565712 PMCid: PMC7296490 DOI: https://doi.org/10.1016/j.sjbs.2020.04.018

Ashrafi B, Beyranvand F, Ashouri F, Rashidipour M, Marzban A, Kheirandish F, et al. Characterization of phytochemical composition and bioactivity assessment of Pseudotrachydium kotschyi essential oils. Medicinal Che Res. 2020. https://doi.org/10.1007/s00044-020-02594-5 DOI: https://doi.org/10.1007/s00044-020-02594-5

Kaur N, Chaudhary J, Jain A, Kishore L. Stigmasterol: A comprehensive review. International J of Pharmaceutical Sci and Res. 2011; 2(9):2259-65.

Prakasia PP, Nair SA. The chemical fingerprint of essential oil components from fresh leaves of Glycosmis pentaphylla (Retz.) Correa. The Pharma Innovation J. 2015; 3(12):50-6.

Kimland B, Norin T. Thunbergol, new macrocyclic diterpene alcohol. Acta Chem Scand. 1968; 22(3):943-8. https://doi.org/10.3891/acta.chem.scand.22-0943 DOI: https://doi.org/10.3891/acta.chem.scand.22-0943

Weli MA, Al-Omar IW, Al-Sabahi NJ, Gilani AS, Alam T, Philip A, et al. Biomarker profiling of essential oil and its antibacterial and cytotoxic activities of Cleome austroarabica. Advances in Biomarker Sci and Tech. 2021; 3:1-7. https://doi.org/10.1016/j.abst.2020.12.001 DOI: https://doi.org/10.1016/j.abst.2020.12.001

Xua C, Zhao S, Li M, Dai Y, Tan L, Liu Y. Chemical composition, antimicrobial and antioxidant activities of essential oil from flue-cured tobacco flower bud. Biotech and Biotech Equip. 2016; 30(5):1026-30. https://doi.org/10.1080/13102818.2016.1195240 DOI: https://doi.org/10.1080/13102818.2016.1195240

Chen J. GC-MS explores the healthcare components in the extract of Pterocarpus pedatus Pierre. Saudi J of Biol Sci. 2018; 25:1183-8. https://doi.org/10.1016/j.sjbs.2017.12.013 PMid:30174520 PMCid: PMC6117239 DOI: https://doi.org/10.1016/j.sjbs.2017.10.003

Vezza T, Canet F, de Marañón AM, Bañuls C, Rocha M, Víctor VM. Phytosterols: nutritional health players in the management of obesity and its related disorders. Antioxidants. 2020; 9(12):1266-74. https://doi.org/10.3390/antiox9121266 PMid:33322742 PMCid: PMC7763348 DOI: https://doi.org/10.3390/antiox9121266

Atanu OF, Ikeojukwu A, Owolabi AP, Avwioroko JO. Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon. 2022; 8:e09922. https://doi.org/10.1016/j.heliyon.2022.e09922 PMid:35847614 PMCid: PMC9283886 DOI: https://doi.org/10.1016/j.heliyon.2022.e09922

Zhai B, Zhang N, Han X, Li Q, Zhang M, Chen X, et al. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomedi and Pharmacothe. 2019; 114:108812. https://doi.org/10.1016/j.biopha.2019.108812 PMid:30965237 DOI: https://doi.org/10.1016/j.biopha.2019.108812

Bakrim S, Benkhaira N, Bourais I, Benali T, Lee L, El-Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022; 11:1912-44. https://doi.org/10.3390/antiox11101912 PMid:36290632 PMCid: PMC9598710 DOI: https://doi.org/10.3390/antiox11101912