Untangling the Role of Metallothionein- III in Cadmium Induced Alteration in Brain Biogenic Amines: Protective Potential of Quercetin

Jump To References Section

Authors

  • Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Highway, Gota, Ahmedabad - 382481, Gujarat ,IN
  • Department of Biochemistry, MSD Autonomous State Medical College, Bahraich - 271801, Uttar Pradesh ,IN
  • Department of Forensic Sciences, Sharda University, Knowledge Park III, Greater Noida - 201310, Uttar Pradesh ,IN

Keywords:

Cadmium, Metallothionein, Neuroprotection, Neurotransmitter, Quercetin

Abstract

Cadmium, a non-transition heavy metal, is largely responsible for the development of neurological and neurodegenerative disorders. Epidemiological and prevalence studies suggest that high exposure to cadmium and consecutive high cumulation in the human body pose a high risk of various diseases. It has been identified that cadmium-induced motor deficits in rats are due to alterations in canonical and noncanonical Cyclic Adenosine (cAMP)-dependent PKA/DARRP32/PP1α associated with decreased Deficiency of Adenosine Deaminase 2 (DA-D2) receptors in the corpus striatum. Continuing those studies, current studies have been executed to untangle the role of Metallothionein- III in cadmium-induced alterations in biogenic amines in selected brain regions of rats. Treatment of rats with cadmium (5mg/kg, per oral) for 28 days caused a marked decrease in neurotransmitter levels in various brain regions while there was no significant change in DA turnover as compared to controls. Further, there was a striking increase in the levels of Metallothionein (MT-III) and levels of cadmium in these brain regions. In silico studies involving ADMET Regression analysis further confirmed the changes wherein it has been shown that the cadmium easily crosses the blood-brain barrier and accumulates in the brain regions, binds with the Metallothionein and produces neurotoxicity. Interestingly, simultaneous exposure with quercetin (25mg/kg, per oral) was found to protect cadmium-induced alterations. The results exhibit that cadmium-induced alteration in biogenic amines may be associated with increased levels of metallothionein in the brain, predicting the toxicity of cadmium.

Downloads

Download data is not yet available.

Published

2024-09-13

How to Cite

Gupta, R., Shukla, R. K., & Chandrvanshi, L. P. (2024). Untangling the Role of Metallothionein- III in Cadmium Induced Alteration in Brain Biogenic Amines: Protective Potential of Quercetin. Toxicology International. Retrieved from http://mail.informaticsjournals.com/index.php/toxi/article/view/36391

Issue

Section

Articles
Received 2024-01-29
Accepted 2024-07-24
Published 2024-09-13

 

References

Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev. 2013; (4-5):898034. https:// doi.org/10.1155/2013/898034 PMid:23997854 PMCid: PMC3753751.

Méndez-Armenta M, Ríos C. Cadmium neurotoxicity. Enviro Toxicol Pharmacol. 2007; 23(3):350-8. https://doi. org/10.1016/j.etap.2006.11.009 PMid:21783780.

Fassett DW. Cadmium: Biological Effects and Occurrence in the Environment. Annu Rev Pharmacol. 1975; 15(1):425- 35. https://doi.org/10.1146/annurev.pa.15.040175.002233 PMid:167657.

Mezynska M, Brzóska MM. Environmental exposure to cadmium risks for the health of the general population in industrialized countries and preventive strategies. Environ Sci Pollut Res. 2017; 1-22. https://doi.org/10.1007/s11356- 017-0827-z PMid:29230653.

Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure and health outcomes. Ciencia and Saude Coletiva. 2011; 16(5):2587-602. https://doi. org/10.1590/S1413-81232011000500029 PMid:21655733 PMCid: PMC5967636.

Nordberg GF. Cadmium and health in the 21st Century - historical remarks and trends for the future. Biometals. 2004; 17(5):485-9. https://doi.org/10.1023/B:BIOM.0000045726.75367.85 PMid:15688851.

Cai S, Yue L, Shang Q, Nordberg G. Cadmium exposure among residents in an area contaminated by irrigation water in China. Bull World Health Organ. 1995; 73(3):359. PMID: 7614668 PMCID: PMC2486658.

Simmons R, Pongsakul P, Saiyasitpanich D, Klinphoklap S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: Implications for public health. Environ Geochem Health. 2005; 27(5-6):501-11. https://doi. org/10.1007/s10653-005-7857-z PMid:16237606.

Khade SW, Adholeya A. Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water, Air, and Soil Pollution. 2009; 202(1- 4):45-56. https://doi.org/10.1007/s11270-008-9957-8

Järup L, Berglund M, Elinder CG, Nordberg G, Vanter M. Health effects of cadmium exposure review of the literature and a risk estimate. Scand J Work, Environ Health. 1998; 1:1-51. PMID: 9569444.

Waalkes MP, Coogan TP, Barter RA. Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit Rev in Toxicol. 1992; 22(3-4):175-201. https://doi. org/10.3109/10408449209145323 PMid:1388705.

Shukla A, Shukla GS, Srimal R. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol. 1996; 15(5):400-5. https:// doi.org/10.1177/096032719601500507 PMid:8735464.

Viaene M, Masschelein R, Leenders J, De Groof M, Swerts L, Roels H. Neurobehavioural effects of occupational exposure to cadmium: A cross-sectional epidemiological study. Occup Environ Med. 2000; 57(1):19-27. https:// doi.org/10.1136/oem.57.1.19 PMid:10711265 PMCid: PMC1739855.

Wang W, Li S, Dong H-p, Lv S, Tang Y-y. Differential impairment of spatial and nonspatial cognition in a mouse model of brain aging. Life Sci. 2009; 85(3):127-35. https:// doi.org/10.1016/j.lfs.2009.05.003 PMid:19450612.

Viaene M, Roels H, Leenders J, De Groof M, Swerts L, Lison D, et al. Cadmium: A possible etiological factor in peripheral polyneuropathy. Neurotoxicology. 1999; 20(1):7-16. PMID: 10091854.

Gonçalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, et al. N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact. 2010; 186(1):53-60. https://doi. org/10.1016/j.cbi.2010.04.011 PMid:20399762.

Ashok A, Rai NK, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd- and Pb-Mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci. 2014; kfu208. https://doi.org/10.1093/toxsci/kfu208 PMid:25288670.

Okuda B, Iwamoto Y, Tachibana H, Sugita M. Parkinsonism after acute cadmium poisoning. Occup Health Ind Med. 1998; 5(38); 232. https://doi.org/10.1016/S0303-8467(97)00090-5 PMid:9491302.

Panayi A, Spyrou N, Iversen B, White M, Part P. Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol. 2002; 195(1):1-10. https://doi.org/10.1016/S0022-510X(01)00672-4 PMid:11867068.

Peng Q, Bakulski KM, Nan B, Park SK. Cadmium and Alzheimer’s disease mortality in US adults: Updated evidence with a urinary biomarker and extended follow-up time. Environ Res. 2017; 157:44-51. https://doi.org/10.1016/j.envres.2017.05.011 PMid:28511080 PMCid: PMC5513740.

Nishimura N, Nishimura H, Ghaffar A, Tohyama C. Localization of metallothionein in the brain of rat and mouse. J Histochem Cytochem. 1992; 40(2):309-15. https:// doi.org/10.1177/40.2.1552172 PMid:1552172.

Hidalgo J, Aschner M, Zatta P, Vašák M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001; 55(2):133-45. https://doi. org/10.1016/S0361-9230(01)00452-X PMid:11470309.

Nordberg GF, Goyer R, Nordberg M. Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch Pathol. 1975; 99(4):192-7. PMID: 1115684.

Lopez E, Arce C, Oset-Gasque M, Canadas S, Gonzalez M. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med. 2006; 40(6):940-51. https://doi.org/10.1016/j.freeradbiomed.2005.10.062 PMid:16540389.

Torda C. Effects of catecholamines on behaviour. J Neurosci Res. 1976; 2(3):193-202. https://doi.org/10.1002/jnr.490020303 PMid:1033296.

Schank JR, Liles LC, Weinshenker D. Norepinephrine signalling through β-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biol Psychiatry. 2008;63(11):1007-12. https://doi.org/10.1016/j. biopsych.2007.10.018 PMid:18083142 PMCid: PMC2405894.

Frederick AL, Stanwood GD. Drugs, biogenic amine targets and the developing brain. Dev Neurosci. 2009; 31(1-2):7- 22. https://doi.org/10.1159/000207490 PMid:19372683 PMCid: PMC2786771.

Hritcu L, Clicinschi M, Nabeshima T. Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiol Behav. 2007; 91(5):652-7. https://doi.org/10.1016/j.physbeh.2007.03.028 PMid:17481676.

Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifino A. Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp Brain Res. 2003; 149(2):200-6. https://doi.org/10.1007/ s00221-002-1356-6 PMid:12610688.

Lafuente A, Fenàndez-Rey E, Seara R, Pérez-Lorenzo M, Esquifino A. Alternate cadmium exposure differentially affects amino acid metabolism within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Neurochem Int. 2001; 39(3):187-92. https://doi. org/10.1016/S0197-0186(01)00029-8 PMid:11434976.

Kühnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet. 1976; 24:117-91. PMID: 790781 https://doi. org/10.1159/000399407

Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004; 24(10):851-74. https:// doi.org/10.1016/j.nutres.2004.07.005

Gupta R, Shukla RK, Chandravanshi LP, Srivastava P, Dhuriya YK, Shanker J, et al. Protective role of Quercetin in Cadmium-induced cholinergic dysfunctions in rat brain by modulating mitochondrial integrity and MAP Kinase signalling. Mol Neurobiol. 2017; 54(6):4560-83. https://doi. org/10.1007/s12035-016-9950-y PMid:27389774.

Gupta R, Shukla RK, Pandey A, Sharma T, Dhuriya YK, Srivastava P, et al. Involvement of PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signalling in cadmiuminduced DA-D2 receptor-mediated motor dysfunctions: Protective role of Quercetin. Scientific Reports. 2018; 8(1):2528. https://doi.org/10.1038/s41598-018-20342-z PMid:29410441 PMCid: PMC5802731.

Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain‐I. J Neurochem. 1966; 13(8):655-69. https://doi.org/10.1111/j.1471-4159.1966.tb09873.x PMid:5950056.

Kim C, Speisky MB, Kharouba SN. Rapid and sensitive method for measuring norepinephrine, dopamine, 5-hydroxytryptamine and their major metabolites in rat brain by high-performance liquid chromatography: Differential effect of probenecid, haloperidol and yohimbine on the concentrations of biogenic amines and metabolites in various regions of rat brain. J Chromatogr. 1987; 386:25-35. https:// doi.org/10.1016/S0021-9673(01)94581-9 PMid:3558607.

Jamal M, Ameno K, Ameno S, Morishita J, Wang W, Kumihashi M, et al. Changes in cholinergic function in the frontal cortex and hippocampus of rat exposed to ethanol and acetaldehyde. Neuroscience. 2007; 144(1):232-8. https://doi. org/10.1016/j.neuroscience.2006.08.066 PMid:17045751.

Bulat Z, Dukić-Ćosić D, Antonijević B, Bulat P, et al. Effect of magnesium supplementation on the distribution patterns of zinc, copper and magnesium in rabbits exposed to prolonged cadmium intoxication. ScientificWorldJournal. 2012; 2012:9. https://doi.org/10.1100/2012/572514 PMid:22701362 PMCid: PMC3373183.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.1016/S0021- 9258(19)52451-6 PMid:14907713.

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature Methods. 2014;12:7. https://doi.org/10.1038/ nmeth.3213 PMid:25549265 PMCid: PMC4428668.

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004; 25(9):1157-74. https://doi. org/10.1002/jcc.20035 PMid:15116359.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):2785-91. https://doi.org/10.1002/ jcc.21256 PMid:19399780 PMCid: PMC2760638.

Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: A review. Prog Neurobiol. 2005; 75(6):406-33. https://doi.org/10.1016/j. pneurobio.2005.04.003 PMid:15955613.

Cory-Slechta DA. Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic and glutamatergic neurotransmitter system functions. Annu Rev Pharmacol Toxicol. 1995; 35(1):391- 415. https://doi.org/10.1146/annurev.pa.35.040195.002135 PMid:7598500.

Tripathi N, Kannan GM, Pant BP, Jaiswal DK, Malhotra PR, Flora SJS. Arsenic-induced changes in certain neurotransmitter levels and their recoveries following chelation in rat whole brain. Toxicol Lett. 1997; 92(3):201-8. https://doi.org/10.1016/ S0378-4274(97)00058-1. PMid:9334831.

Minami A, Takeda A, Nishibaba D, Takefuta S, Oku N. Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res. 2001; 894(2):336-9. https://doi. org/10.1016/S0006-8993(01)02022-4 PMid:11251212.

Lafuente A, González-Carracedo A, Romero A, Cabaleiro T, Esquifino AI. Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett. 2005; 155(1):87-96. https://doi.org/10.1016/j.toxlet.2004.08.011 PMid:15585363.

Antonio M, Corpas I, Leret M. Neurochemical changes in newborn rat’s brain after gestational cadmium and lead exposure. Toxicol Lett. 1999; 104(1-2):1-9. https://doi. org/10.1016/S0378-4274(98)00125-8 PMid:10048743.

Antonio MT, Corredor L, Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett. 2003; 143(3):331-40. https:/doi.org/10.1016/ S0378-4274(03)00194-2 PMid:12849694.

Gutiérrez-Reyes EY, Albores A, Ríos C. Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone-induced metallothionein. Toxicology. 1998; 131(2):145-54. https://doi.org/10.1016/ S0300-483X(98)00126-7 PMid:9928629.

Antonio MT, Corpas I, Leret ML. Neurochemical changes in newborn rat’s brain after gestational cadmium and lead exposure. Toxicol Lett. 1999; 104(1):1-9. https://doi. org/10.1016/S0378-4274(98)00125-8. PMid:10048743.

Pillai A, Priya L, Gupta S. Effects of combined exposure to lead and cadmium on the hypothalamic-pituitary axis function in proestrous rats. Food Chem Toxicol. 2003; 41(3):379-84. https://doi.org/10.1016/S0278- 6915(02)00247-8 PMid:12504170.

Rai NK, Ashok A, Rai A, Tripathi S, Nagar GK, Mitra K, et al. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina. Toxicol Appl Pharmacol. 2013; 273(2):242-58. https://doi. org/10.1016/j.taap.2013.05.003 PMid:23680456.

Richetti S, Blank M, Capiotti K, Piato A, Bogo M, Vianna M, et al. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res. 2011; 217(1):10-5. https://doi.org/10.1016/j.bbr.2010.09.027 PMid:20888863.

Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Aβ (1-42): relevance to Alzheimer’s disease. The J Nutr Biochem. 2009; 20(4):269-75. https://doi. org/10.1016/j.jnutbio.2008.03.002. PMid:18602817 PMCid: PMC2737260.

Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett. 2011; 500(2):139-43. https:// doi.org/10.1016/j.neulet.2011.06.021. PMid:21704673.

Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Manuel Matamala J, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS & Neurol Disord - Drug Targets (Formerly Current Drug Targets. 2013;12(5):698- 714. https://doi.org/10.2174/1871527311312050015 PMid:23469845.

Unsal C, Kanter M, Aktas C, Erboga M. Role of quercetin in cadmium-induced oxidative stress, neuronal damage, and apoptosis in rats. Toxicol Ind Health. 2013:0748233713486960. https://doi. org/10.1177/0748233713486960 PMid:23645211.

Abdel Moneim AE, Bauomy AA, Diab MMS, Shata MTM, Al-Olayan EM, El-Khadragy MF. The Protective effect of Physalis peruviana L. against cadmiuminduced neurotoxicity in rats. Biol Trace Elem Res. 2014; 160(3):392-9. https://doi.org/10.1007/s12011-014-0066-9 PMid:25022246.

Hider RC, Liu ZD, Khodr HH. Metal chelation of polyphenols. Methods Enzymol. 2001; 335:190-203. https:// doi.org/10.1016/S0076-6879(01)35243-6 PMid:11400368.

Sharma DR, Wani WY, Sunkaria A, Kandimalla RJ, Verma D, Cameotra SS, et al. Quercetin protects against chronic aluminium-induced oxidative stress and ensuing biochemical, cholinergic and neurobehavioral impairments in rats. Neurotox Res. 2013; 23(4):336-57. https://doi. org/10.1007/s12640-012-9351-6

Probst GS, Bousquet WF, Miya TS. Correlation of hepatic metallothionein concentrations with acute cadmium toxicity in the mouse. Toxicol Appl Pharmacol. 1977; 39(1):61-9. https://doi.org/10.1016/0041-008X(77)90177-6 PMid:841574.

Lu J, Jin T, Nordberg G, Nordberg M. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol Appl Pharmacol. 2005; 206(2):150-6. https://doi.org/10.1016/j.taap.2004.12.015 PMid:15967203.

Montoliu C, Monfort P, Carrasco J, Palacios Ó, Capdevila M, Hidalgo J, et al. Metallothionein-III prevents glutamate and nitric oxide neurotoxicity in primary cultures of Cerebellar neurons. J Neurochem. 2000; 75(1):266-73. https://doi. org/10.1046/j.1471-4159.2000.0750266.x PMid:10854270.

Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol. 2009; 238(3):215-20. https://doi.org/10.1016/j.taap.2009.03.026 PMid:19362100 PMCid:PMC2740813.

Young JK, Garvey JS, Huang PC. Glial immunoreactivity for metallothionein in the rat brain. Glia. 1991; 4(6):602-10. https://doi.org/10.1002/glia.440040607 PMid:1720764.