A Comprehensive Review of Electronic Cooling Technologies in Harsh Field Environments: Obstacles, Progress, and Prospects

Jump To References Section

Authors

  • Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology Pimpri, Pune - 411018, Maharashtra ,IN
  • Department of Mechanical Engineering, Bhivarabai Sawant College of Engineering and Research, Pune - 411041, Maharashtra ,IN
  • Department of Mechanical and Industrial Engineering, College of Engineering, National University of Science and Technology, Muscat ,OM
  • Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology Pimpri, Pune - 411018, Maharashtra ,IN
  • Department of Mechanical Engineering, Marathwada Mitra Mandal's College of Engineering, Karvenagar, Pune - 411052, Maharashtra ,IN
  • Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology Pimpri, Pune - 411018, Maharashtra ,IN
  • Department of Mechanical Engineering, Marathwada Mitra Mandal's College of Engineering, Karvenagar, Pune - 411052, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jmmf/2024/45212

Keywords:

Emissions Electronic Cooling, Energy Efficiency, Heat Dissipation, Immersion Cooling, Liquid Cooling, Phase- Change Cooling, Thermal Management, Thermoelectric Cooling, Sustainability

Abstract

Electronic cooling is crucial for modern electronic device design, ensuring devices operate at peak performance, reliability, and longevity. This paper offers an in-depth critical review of electronic cooling technologies, covering both established methods and recent innovations. It explores the challenges in electronic cooling, such as effective heat dissipation, thermal management, and reliability concerns. Various cooling strategies are examined, including air cooling, liquid cooling, phase-change cooling, and emerging technologies like thermoelectric cooling and two-phase immersion cooling. The paper also evaluates recent advancements in materials, design, and manufacturing processes that have transformed electronic cooling. Additionally, it discusses the impact of electronic cooling on energy efficiency, environmental sustainability, and cost-effectiveness. Finally, the review highlights future research directions and opportunities for innovation in electronic cooling to meet the increasing demands of high-performance electronic systems. The findings provide valuable insights for thermal design engineers, assisting in optimal IC chip placement on the substrate board to enhance reliability and extend operational lifespan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-09-04

How to Cite

Kurhade, A. S., Kardekar, N. B., Bhambare, P. S., Waware , S. Y., Yadav, R. S., Pawar, P., & Kirpekar, S. (2024). A Comprehensive Review of Electronic Cooling Technologies in Harsh Field Environments: Obstacles, Progress, and Prospects. Journal of Mines, Metals and Fuels, 72(2), 557–579. https://doi.org/10.18311/jmmf/2024/45212

Issue

Section

Articles
Received 2024-07-29
Accepted 2024-08-13
Published 2024-09-04

 

References

GaneshKumar P, Sivalingam V, Vigneswaran VS, Ramalingam V, Cheol KS, Vanaraj R. Spray cooling for hydrogen vehicle, electronic devices, solar and building (low temperature) applications: A state-of-art review. Renew Sustain Energy Rev. 2024; 189:113931. https://doi.org/10.1016/j.rser.2023.113931

Kurhade A, Talele V, Rao TV, Chandak A, Mathew VK. Computational study of PCM cooling for the electronic circuit of smart-phone. Mater Today Proc. 2021; 47:3171-6. https://doi.org/10.1016/j.matpr.2021.06.284

Kurhade AS, Murali G. Thermal control of IC chips using phase change material: A CFD investigation. Int J Mod Phys C. 2022; 33(12): 2250159. https://doi.org/10.1142/S0129183122501595

Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC Chips. Int J Eng Trends Technol. 2022; 71(3):65-72. https://doi.org/10.14445/22315381/ IJETT-V71I3P208

Patil Sp, Kore SS, Chinchanikar SS, Waware SY. Characterization and machinability studies of aluminium-based hybrid metal matrix composites – A critical review. J Adv Res Fluid Mech Therm Sci. 2023; 101(2):137-63. https://doi.org/10.37934/ arfmts.101.2.137163

Waware SY, Kore SS, Patil SP. Heat transfer enhancement in tubular heat exchanger with jet impingement: A review. J Adv Res Fluid Mech Therm Sci. 2023; 101(2):8-25. https://doi.org/10.37934/ arfmts.101.2.825

Khot RS, Kadam PR. Structural behavior of fillet weld joint for bimetallic curved plate using Finite Element Analysis (FEA). 6th International Conference on Advanced Research in Arts, Science, Engineering and Technology (ICARASET); 2021.

Khot RS, Rao TV. Investigation of mechanical behaviour of laser welded butt joint of Transformed Induced Plasticity (TRIP) steel with effect laser incident angle. Int J Eng Res Technol. 2020; 13(11):3398. https://doi.org/10.37624/IJERT/13.11.2020.33983403

Khot RS, Rao TV, Natu H, Girish HN, Ishigaki T, Madhusudan P. An investigation on laser welding parameters on the strength of TRIP steel. Strojniški Vestnik – J Mech Eng. 2021; 67(1-2):45-52. https:// doi.org/10.5545/sv-jme.2020.6912

Khot RS, Rao TV. Effect of quenching media on laser butt welded joint on Transformed -Induced Plasticity (TRIP) steel. Int J Emerg Trends Eng Res. 2020; 8(10):7686-91. https://doi.org/10.30534/ ijeter/2020/1588102020

Khot RS, Rao TV, Keskar A, Girish HN, Madhusudan P. Investigation on the effect of power and velocity of laser beam welding on the butt weld joint on TRIP steel. J Laser Appl. 2020; 32(1):012016. https://doi.org/10.2351/1.5133158

Abokersh MH, Osman M, El-Baz O, El-Morsi M, Sharaf O. Review of the Phase Change Material (PCM) usage for Solar Domestic Water Heating Systems (SDWHS). Int J Energy Res. 2017; 42(2):32957. https://doi.org/10.1002/er.3765

Fujii M, Gima S, Tomimura T, Zhang X. Natural convection to air from an array of vertical parallel plates with discrete and protruding heat sources. Int J Heat Fluid Flow. 1996; 17(5):483-90. https://doi.org/10.1016/0142-727X(96)00051-3

Chen S, Liu Y. An optimum spacing problem for three-by-three heated elements mounted on a substrate. J Heat Mass Transf. 2002; 39(1):3-9. https:// doi.org/10.1007/s00231-001-0286-3

Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells. 2011; 95(4):1208-12. https:// doi.org/10.1016/j.solmat.2011.01.021

Bessaïh R, Kadja M. Turbulent natural convection cooling of electronic components mounted on a vertical channel. Appl Therm Eng. 2000; 20(2):14154. https://doi.org/10.1016/S1359-4311(99)00010-1

Aydin O, Yang W. Natural convection in enclosures with localized heating from below and symmetrical cooling from sides. Int J Numer Methods Heat Fluid Flow. 2000; 10(5):518-29. https://doi.org/10.1108/09615530010338196

Tou S, Zhang XF. Three-dimensional numerical simulation of natural convection in an inclined liquidfilled enclosure with an array of discrete heaters. Int J Heat Mass Transf. 2003; 46(1):127-38. https://doi.org/10.1016/S0017-9310(02)00253-3

Chuang SH, Chiang JS, Kuo YM. Numerical simulation of heat transfer in a three-dimensional enclosure with three chips in various position arrangements. Heat Transf Eng. 2003; 24(2):42-59. https://doi.org/10.1080/01457630304076

Bhowmik H, Tso CP, Tou KW, Tan FL. Convection heat transfer from discrete heat sources in a liquid cooled rectangular channel. Appl Therm Eng. 2005; 25(16):2532-42. https://doi.org/10.1016/j.applthermaleng.2004.11.022

Bazylak A, Djilali N, Sinton D. Natural convection in an enclosure with distributed heat sources. Numer Heat Transf A. 2006; 49(7):655-67. https://doi.org/10.1080/10407780500343798

Florio LA, Harnoy A. Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel. Appl Therm Eng. 2007; 27(13):2276-93. https://doi.org/10.1016/j.applthermaleng.2007.01.023

Desrayaud G, Fichera A, Lauriat G. Natural convection air-cooling of a substrate-mounted protruding heat source in a stack of parallel boards. Int J Heat Fluid Flow. 2007; 28(3):469-82. https://doi.org/10.1016/j.ijheatfluidflow.2006.07.003

Bakkas M, Amahmid A, Hasnaoui M. Numerical study of natural convection heat transfer in a horizontal channel provided with rectangular blocks releasing uniform heat flux and mounted on its lower wall. Energy Convers Manag. 2008; 49(10):2757-66. https://doi.org/10.1016/j.enconman.2008.03.017

Koca A, Oztop HF, Varol Y. Natural convection analysis for both protruding and flush-mounted heaters located in triangular enclosure. Proc Inst Mech Eng C J Mech Eng Sci. 2008; 222(7):1203-14. https://doi.org/10.1243/09544062JMES886

Sudhakar TVV, Shori A, Balaji C, Venkateshan SP. Optimal heat distribution among discrete protruding heat sources in a vertical duct: A combined numerical and experimental study. J Heat Transfer. 2009; 132(1). https://doi.org/10.1115/1.3194762

Ahmed SE, Mansour MA, Hussein AK, Sivasankaran S. Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. Eng Sci Technol Int J. 2016; 19(1):364-76. https://doi.org/10.1016/j.jestch.2015.08.005

Nardini G, Paroncini M. Heat transfer experiment on natural convection in a square cavity with discrete sources. Heat Mass Transf. 2012; 48(11):1855-65. https://doi.org/10.1007/s00231-012-1026-6

Habib MA, Said SAM, Ayinde T. Characteristics of natural convection heat transfer in an array of discrete heat sources. Exp Heat Transfer. 2013; 27(1):91-111. https://doi.org/10.1080/08916152.2012.731473

Coşkun T, Çetkin E. Cold plate enabling air and liquid cooling simultaneously: Experimental study for battery pack thermal management and electronic cooling. Int J Heat Mass Transf. 2023; 217:124702-2. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124702

Choi CY, Ortega A. Mixed convection in an inclined channel with a discrete heat source. Int J Heat Mass Transf. 1993; 36(12):3119-34. https://doi.org/10.1016/0017-9310(93)90040-D

Du SQ, Bilgen E, Vasseur P. Mixed convection heat transfer in open ended channels with protruding heaters. Heat Mass Transf. 1998; 34(4):263-70. https:// doi.org/10.1007/s002310050258

Ozsunar A, Arcaklıoglu E, Dur FN. The prediction of maximum temperature for single chips’ cooling using artificial neural networks. Heat Mass Transf. 2008; 45(4):443-50. https://doi.org/10.1007/s00231-0080445-x

Özsunar A, Başkaya S, Sivrioğlu M. Numerical analysis of Grashof number, Reynolds number and inclination effects on mixed convection heat transfer in rectangular channels. Int Commun Heat Mass Transf. 2001; 28(7):985-94. https://doi.org/10.1016/ S0735-1933(01)00302-5

Liu Y, Phan-Thien N, Kemp R, Luo XL. Threedimensional coupled conduction-convection problem for three chips mounted on a substrate in an enclosure. Numeri Heat Transf A Appl. 1997; 32(2):149-67. https://doi.org/10.1080/10407789708913885

Zhou J, Chen Z, Liu D, Li J. Experimental study on melting in a rectangular enclosure heated below with discrete heat sources. J Therm Sci. 2001; 10(3):254-9. https://doi.org/10.1007/s11630-001-0028-3

Bhowmik H, Tou KW. Experimental study of transient natural convection heat transfer from simulated electronic chips. Exp Therm Fluid Sci. 2005; 29(4):485-92. https://doi.org/10.1016/j.expthermflusci.2004.06.003

Guimarães PM, Menon GJ. Combined free and forced convection in an inclined channel with discrete heat sources. Int Commun Heat Mass Transf. 2008; 35(10):1267-74. https://doi.org/10.1016/j.icheatmasstransfer.2008.08.006

Aminossadati SM, Ghasemi B. A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity. Eur J Mech B Fluids. 2009; 28(4):590-8. https://doi.org/10.1016/j.euromechflu.2009.01.001

Kargar A, Ghasemi B, Aminossadati SM. An artificial neural network approach to cooling analysis of electronic components in enclosures filled with nanofluids. J Electron Packag. 2011; 133(1). https://doi.org/10.1115/1.4003215

Amirouche Y, Bessaïh R. Three-dimensional numerical simulation of air cooling of electronic components in a vertical channel. Fluid Dyn Mater Process. 2012; 8(3):295-310.

Ahmed SE, Mansour MA, Hussein AK, Sivasankaran S. Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. Eng Sci Technol Int J. 2016; 19(1):364-76. https://doi.org/10.1016/j.jestch.2015.08.005

Zarma I, Ahmed M, Ookawara S. Enhancing the performance of concentrator photovoltaic systems using Nanoparticle-phase change material heat sinks. Energy Convers Manag. 2019; 179:229-42. https://doi.org/10.1016/j.enconman.2018.10.055

Waware SY, Kore S, Kurhade AS, Patil P. Innovative heat transfer enhancement in tubular heat exchanger: An experimental investigation with Minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024; 116(2):51-8. https://doi.org/10.37934/arfmts.116.2.5158

Waware SY, Chougule SM, Yadav RS, Biradar R, Patil P, Munde KH, et al. A comprehensive evaluation of recent studies investigating nanofluids utilization in heat exchangers. J Adv Res Fluid Mech Therm Sc. 2024; 119(2):160-72. https://doi.org/10.37934/ arfmts.119.2.160172

Kumar VG, Phaneendra K. Optimization of temperature of a 3D duct with the position of heat sources under mixed convection. Lect Notes Mech Eng. 2018; 275-84. https://doi.org/10.1007/978-98113-1903-7_32

Gasia J, Maldonado JM, Galati F, De Simone M, Cabeza LF. Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Convers Manag. 2019; 184:530-8. https://doi.org/10.1016/j.enconman.2019.01.085

Kalbasi R, Afrand M, Alsarraf J, Tran MD. Studies on optimum fins number in PCM-based heat sinks. Energy. 2019; 171:1088-99. https://doi.org/10.1016/j.energy.2019.01.070

García F, Treviño C, Lizardi J, Martínez-Suástegui L. Numerical study of buoyancy and inclination effects on transient mixed convection in a channel with two facing cavities with discrete heating. Int J Mech Sci. 2019; 155:295-314. https://doi.org/10.1016/j.ijmecsci.2019.03.001

Xie J, Lee HM, Xiang J. Numerical study of thermally optimized metal structures in a Phase Change Material (PCM) enclosure. Appl Therm Eng. 2019; 148:825-37. https://doi.org/10.1016/j.applthermaleng.2018.11.111

Elmozughi AF, Solomon L, Oztekin A, Neti S. Encapsulated phase change material for high temperature thermal energy storage – Heat transfer analysis. Int J Heat Mass Transf. 2014; 78:1135-44. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.087

Solomon A. A note on the Stefan number in slab melting and solidification. Lett Heat Mass Transf. 1981; 8(3):229-35. https://doi.org/10.1016/00944548(81)90017-5

Demirbas MF. Thermal energy storage and phase change materials: An overview. Energy Sources B: Econ Plan Policy. 2006; 1(1):85-95. https://doi.org/10.1080/009083190881481

Kandasamy R, Wang XQ, Mujumdar AS. Transient cooling of electronics using Phase Change Material (PCM)-based heat sinks. Appl Therm Eng. 2008; 28(8-9):1047-57. https://doi.org/10.1016/j.applthermaleng.2007.06.010

Faraji M, El Qarnia H. Numerical study of melting in an enclosure with discrete protruding heat sources. Appl Math Model. 2010; 34(5):1258-75. https://doi.org/10.1016/j.apm.2009.08.012

Ye WB, Zhu DS, Wang N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Appl Therm Eng. 2011; 31(17-18):3871-84. https://doi.org/10.1016/j.applthermaleng.2011.07.035

Mahmoud S, Tang A, Toh C, AL-Dadah R, Soo SL. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Appl Energy. 2013; 112:1349-56. https://doi.org/10.1016/j.apenergy.2013.04.059

Kurhade AS, Rao TV, Mathew VK, Patil NG. Effect of thermal conductivity of substrate board for temperature control of electronic components: A numerical study. Int J Mod Phys C. 2021; 32(10):2150132. https://doi.org/10.1142/ S0129183121501321

El Qarnia H, Draoui A, Lakhal EK. Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Appl Math Model. 2013; 37(6):3968-81. https://doi.org/10.1016/j.apm.2012.08.021

Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, et al. Predictive placement of IC Chips using ANN-GA approach for efficient thermal cooling. J Adv Res. Fluid Mech Therm Sc. 2024; 118(2):137-4.

Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. Springer eBooks; 2019. p. 617-24. https://doi.org/10.1007/9783-030-16848-3_56

Ali HM, Ashraf MJ, Giovannelli A, Irfan M, Irshad TB, Hamid HM, et al. Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf. 2018; 123:272-84. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.044

Ashraf MJ, Ali HM, Usman H, Arshad A. Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials. Int J Heat Mass Transf. 2017; 115:251-63. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.114

Rehman T -, Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transf. 2018; 98:155-62. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.003

Arshad A, Ali HM, Khushnood S, Jabbal M. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: Effect of pin-fin diameter. Int J Heat Mass Transf. 2018; 117:861-72. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.008

Loganathan A, Mani I. A fuzzy based hybrid multi criteria decision making methodology for phase change material selection in electronics cooling system. Ain Shams Eng J. 2018; 9(4):2943-50. https://doi.org/10.1016/j.asej.2017.11.005

Usman H, Ali HM, Arshad A, Ashraf MJ, Khushnood S, Janjua MM, et al. An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat Mass Transf. 2018; 54(12):3587-98. https://doi.org/10.1007/s00231-0182389-0

Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2009; 101(1):385-9. https://doi.org/10.1007/ s10973-009-0472-y

Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C. 2011; 115(17):8753-8. https://doi.org/10.1021/ jp200838s

Rabie R, Emam M, Ookawara S, Ahmed M. Thermal management of concentrator photovoltaic systems using new configurations of phase change material heat sinks. Sol Energy. 2019; 183:632-52. https://doi.org/10.1016/j.solener.2019.03.061

Khademi A, Darbandi M, Shafii MB, Schneider G. Numerical simulation of phase change materials to predict the energy storage process accurately. AIAA Propulsion and Energy 2019 Forum; 2019. p. 4225. https://doi.org/10.2514/6.2019-4225

Bondareva NS, Buonomo B, Manca O, Sheremet MA. Heat transfer performance of the finned nanoenhanced phase change material system under the inclination influence. Int J Heat Mass Transf. 2019; 135:1063-72. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.045

Gharbi S, Harmand S, Jabrallah SB. Parametric study on thermal performance of PCM heat sink used for electronic cooling. Green Energy Technol. 2018; 24356. https://doi.org/10.1007/978-3-319-62572-0_17

Saha S, Nayak KC, Srinivasan K, Dutta P. Cooling of electronics using phase change materials and thermal conductivity enhancers. 18th National and 7th ISHMTASME Heat Mass Transfer Conference; 2006. p. 4-6.

Saha SK, Dutta P, Paruya S, Kar S, Roy S. Cooling of Electronics with Phase Change Materials. AIP Conference Proceedings. 2010; 1298(1):31-6. https:// doi.org/10.1063/1.3516323

Hasan A, Hejase H, Abdelbaqi S, Assi A, Hamdan MO. Comparative effectiveness of different phase change materials to improve cooling performance of heat sinks for electronic devices. Appl Sci. 2016; 6(9):226. https://doi.org/10.3390/app6090226

Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012; 16(8):5603-16. https://doi.org/10.1016/j.rser.2012.05.037

Ling Z, Chen J, Fang X, Zhang Z, Xu T, Gao X, Wang S. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Appl Energy. 2014; 121:104-13. https://doi.org/10.1016/j.apenergy.2014.01.075

Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy. 2018; 162:1169-82. https://doi.org/10.1016/j.energy.2018.08.068

Hasan MI, Tbena HL. Enhancing the cooling performance of micro pin fin heat sink by using the phase change materials with different configurations. 2018 International Conference on Advance of Sustainable Engineering and its Application (ICASEA); 2018. p. 205-9. https://doi.org/10.1109/ ICASEA.2018.8370982

Hasan MI, Tbena HL. Using of phase change materials to enhance the thermal performance of micro channel heat sink. Eng Sci Technol Int J. 2018; 21(3):517-26. https://doi.org/10.1016/j.jestch.2018.03.017

Karami R, Kamkari B. Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units. Appl Therm Eng. 2019; 146:45-60. https://doi.org/10.1016/j.applthermaleng.2018.09.105

Song L, Zhang H, Yang C. Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. Int J Heat Mass Transf. 2019; 133:827-41. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.157

Thesiya D, Patel H, Patange GS. A comprehensive review electronic cooling: A nanomaterial perspective. Int J Thermfl. 2023; 19:100382-2. https://doi.org/10.1016/j.ijft.2023.100382

Singh A, Rangarajan S, Sammakia B. Utilizing Ragone framework for optimized phase change material-based heat sink design in electronic cooling applications. Int J Heat Mass Transf. 2024; 227:125518-8. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125518

Rosli MAM, Saleem SNDN, Sanusi N, Salimen N, Herawan SG, Abdullah Q. Performance optimization of a simulation study on phase change material for photovoltaic thermal. CFD Lett. 2022; 14(9):32-51. https://doi.org/10.37934/cfdl.14.9.3251

Cirillo L, Greco A, Masselli C. Development of an electronic circuit cooling system using elastocaloric effect: A FEM comparison among different configurations. Appl Therm Eng. 2023; 219:119463. https://doi.org/10.1016/j.applthermaleng.2022.119463

Masselli C, Cirillo L, Greco A. Cooling of electronic circuits through elastocaloric solid-state technology: A numerical analysis for the development of the CHECK TEMPERATURE prototype. Appl Therm Eng. 2023; 230, Part B:120729. https://doi.org/10.1016/j.applthermaleng.2023.120729

Narasimham GS. Natural convection from discrete heat sources in enclosures: An overview. Vivechan Int J Res. 2010; 1:63-78.

Mahdi MS. Natural convection in a vertical rectangular enclosure. Kirkuk J Sci. 2013; 8:1-16. https://doi.org/10.32894/kujss.2013.87984

Korichi A, Laouche N. Pulsed flow in a vertical channel with discrete heat sources. 2nd National Conference on Computional Fluid Dynamics and Technology; 2018. https://doi.org/10.2139/ssrn.3372913

Queipo NV, Gil GF. Multiobjective optimal placement of convectively and conductively cooled electronic components on printed wiring boards. J Electron Packag. 1999; 122(2):152-9. https://doi.org/10.1115/1.483148

da Silva AK, Lorente S, Bejan A. Optimal distribution of discrete heat sources on a plate with laminar forced convection. Int J Heat Mass Transf. 2004; 47(10-11):2139-48. https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.009

Premachandran B, Balaji C. Mixed convection heat transfer from a horizontal channel with protruding heat sources. Heat Mass Transf. 2004; 41(6):510-8. https://doi.org/10.1007/s00231-004-0570-0

Chaurasia NK, Gedupudi S, Venkateshan SP. Studies on three-dimensional mixed convection with surface radiation in a rectangular channel with discrete heat sources. Heat Transf Eng. 2017; 40(1-2):66-80. https://doi.org/10.1080/01457632.2017.1404826

Rathod MK, Banerjee J. Experimental investigations on latent heat storage unit using paraffin wax as phase change material. Exp Heat Transfer. 2013; 27(1):40-55. https://doi.org/10.1080/08916152.2012.719065

Janarthanan B, Sagadevan S. Thermal energy storage using phase change materials and their applications: A review. Int J Chemtech Res. 2015; 8:250-6.

Tauseef-ur- Rehman and Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transf. 2018; 98:155-62. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.003

Hamza F, Mustapha F, El Alami Mustapha. Effect of nano-particles insertion on heat storage efficiency in a phase change material. 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS); 2019. p. 1-5. https://doi.org/10.1109/WITS.2019.8723693

Most read articles by the same author(s)