
onset of double diffusive convection in a two-layer
system with a magnetic field for the Darcy-Binnkman
model. Recently, Gangadharaiah (2021) has studied
double diffusive Marangoni convection in a superposed
fluid and saturated anisotropic porous layer.

Hill (2005) studied linear and nonlinear stability
analysis at the initiation of double-diffusion con-
vection in a fluid-saturated porous layer with a
concentration-based internal heat source. Gaikwad
and Dhanraj (2014) conducted an analytical study of
the effect of an internal heat source on the beginning of
both stationary and oscillatory double diffusive
convection considering anisotropic porous layer, and
also by Altawallbeh et al. (2013) with soret effect.
Deepika et al.(2016) investigated the onset of double
diffusive natural convection in a fluid saturated porous
medium considering temperature and concentration
gradients across the surfaces into account. The
combined effect of buoyancy and surface tension in a
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Abstract

Double diffusive convection is the phenomena that describes the convection driven by two differ- ent densities which have different
rates of diffusion. A comparison of two temperature boundaries when i) both the surfaces are set at adiabatic temperature, and ii)upper
free surface is adiabatic and lower rigid surface is isothermal cases, on surface tension driven double diffusive convection in a horizontal
composite layer is studied analytically using exact method. For both cases i) and ii), the thermal Marangoni number (Tmn) is
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boundary condition.
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1. Introduction

Marangoni convection is the mass transfer along an
interface between two fluids due to surface tension
gradients. Bergman (1986) demonstrated that surface
tension in a binary fluid fluctuates with temperature
and species concentration if both contribute oppositely
at a free surface. In the science of convection, the study
of convective motions when there are many diffusing
components with differing molecular diffusivities is of
recent development. In composite layers, double
diffusive or two-component convection has a wide
range of applications in crsytal growth, solidification
of alloys, upwelling of nutrients, controlling the climate
of earth, vertical transport of heat and salt in Oceans,
astrophysics, geophysics, biology and limnology. A
linear stability analysis has been investigated by
Ming-Ichar and Ko-TaChaing (1996) in a double
diffusive layer. Sumithra (2012) has inves-tigated the
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liquid saturated porous layer with temperature and
concentration dependent viscosity has been studied by
Bahadori and Rezvantalab (2014). Khalid et al. (2016)
examined the reaction of Soret and Dufour coefficients
in a rotating nanofluid layer with uniform internal
heat source and feedback controller on double diffusive
convection for rigid-rigid, rigd-free and free-free
boundary conditions. Sumithra et al. (2012), (2018),
(2020), (2021) investigated the effects linear and non-
linear temperature profiles on two-component
Marangoni convection composite medium for Darcy
and Darcy-Brinkman model, and has extended the
same work considering uniform and variable heat
source. Most of the researchers have considered double
diffusive convection in a single layer with uniform
heat source. There are only few works are available on
double diffusive surface tension driven convection in a
composite layer. In this research paper, we compare
two thermal boundaries (i)when both surfaces have
symmetric (adiabatic) conditions, and (ii)upper surface
of the fluid medium is adiabatic, lower surface of the
porous medium is isothermal, on the double diffusive
Marangoni convection in a composite layer considering
variable heat sources.

2. Mathematical Analysis

We consider an infinite horizontal fluid saturated
porous layer of thickness dm beneath a layer of the same
fluid of thickness d. The porous layer’s bottom surface
is rigid, while the fluid layer’s upper surface is free. The
thermal boundaries of the composite system are
considered for two cases (i) both are adiabatic, (ii)
upper layer is adiabatic and lower layer is isothermal.
A cartesian coordinate system (x, y, z) is chosen such
that the origin is at the interface between the fluid and
fluid-saturated porous layer and the z-axis pointing
vertically upwards.

The basic governing equations for the above
configuration are:

(Subscripts ’f ’ and ’m’ represents fluid and porous
layers respectively) In the fluid layer (0zd)

(1)

(2)

(3)

(4)

In the porous medium (–dmzm0)
(5)

(6)

(7)

(8)

where  and  respectively are the velocity vectors
of the fluid in the fluid and porous layers, 0 is the fluid
density, µ represents the viscosity of the fluid, P, the
pressure,  refers to the porosity, K represents the

permeability,  represents the ratio of heat
capacities with Cp as the specific heat,  and m refers
to thermal diffusivities of the fluid and porous layer
respectively, T and Tm are the temperatures in the fluid
and porous layers, Q and Qm denotes heat sources in
the fluid and porous layers, t denotes time, c and cm
denotes concentrations in the fluid and porous region,
cf and cm denotes solute difffusivities in the fluid and
porous medium respectively.

The governing equations are solved assuming the
basic state is quiescent [Sumithra et al. (2020)]. The
temperature and concentration distributions [see
Manjunatha and Sumithra (2018)] are:

...(9)

...(10)

...(11)

...12)

where  and

 are the interface temperature

and species concentration respectively. Tu represents
upper temperature and TL represents lower
temperature, subscript ‘b’ represents basic state.
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Following Sumithra and Manjunatha (2018) the method of infinitesimal pertubations are superim- posed and
the governing equations are nondimensionalized by choosing suitable scaling parameters after linearization (see
Manjunatha and Sumithra (2018)). The time derivative can be removed from the perturbed dimensionless
equations since the concept of exchange of stability holds for the provided composite system. Then we perform
normal mode expansion to obtain solutions for w, wm, , m, s, and sm in the form

... (13)

... (14)
The differential equations so obtained by applying equations (13) and (14) to the perturbed dimensionless

equations are:

... (15)

... (16)

... (17)

 ... (18)

... (19)

... (20)

where  and  are horizontal wave numbers in the fluid and the porous medium

respectively, W and Wm are the velocities of the fluid and the porous layers in the vertical direction,  and

 are the internal Rayleigh numbers of the fluid and porous layers  and  are the

solute to thermal diffusivity ratios in the fluid and porous layers respectively.
The corresponding boundary conditions for solving equations (15) to (20) (nondimesionalized and subjected

to normal mode expansion) follows from Manjunatha and Sumithra (2018):
... (21)

The velocity boundary conditions are:

... (22)

Thermodynamic boundary conditions are:

... (23)

Boundary criteria for salinity are as follows:

... (24)

Here  is the depth ratio,  is the thermal diffusivity ratio,  is the solute diffusivity ratio,

 is the Darcy number,  is the thermal Marangoni number and 

is the solute Marangoni number, where  is the surface tension.
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3. Solution by Exact method

For the above boundary conditions, thermal Marangoni number (Tmn) is obtained by using exact method for
two different thermal boundary conditions viz; (i) both the upper surface of the fluid layer and the lower surface
of the porous layer are adiabtic, and (ii) the upper surface of the fluid layer is adiabatic but the lower surface of
the porous layer is isothermal.

The solutions for vertical velocities are obtained by solving equations (15) and (16) using velocity boundary
conditions (22) and are as follows:

... (25)

... (26)

The solutions for S(z) and Sm(zm) are obtained by substituting W(z) and Wm(zm) in equations (19) and (20) and
using salinity boundary conditions (24).

... (27)

... (28)

3.1. To obtain Tmn MT1
 when the free surface and the rigid surface are both adiabatic (A-A)

The equations (17) and (18) are solved using (25), (26) and adiabatic boundary conditions as mentioned in (23) to
obtain 1(z) and m1(zm).

... (29)

... (30)

The Tmn MT1
 obtained from the boundary condition (21) for the A-A case is:
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3.2. To obtain Tmn MT2
 when the free surface is adiabatic and the rigid surface is

isothermal (A-I)
The equations (17) and (18) are solved using W(z), Wm(zm) and adiabatic-isothermal boundary conditions as
mentioned in (23) to obtain 2(z) and m2(zm).

... (31)

... (32)

The Tmn MT2
 obtained from the boundary condition (21) for the A-I case is:
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4.0 Result and discussion boundary conditions. The eigen value, Tmn is obtained
using exact method for both the temperature
boundary conditions. Below are graphical
representations of Tmn for STDDDC as a function of
physical parameters versus depth ratio .

The comparison of MT1 , Tmn for adiabatic-adiabatic
(A-A) condition and MT2 , Tmn for adiabatic-
isothermal (A-I) condition is illustrated in figure 1. It is
seen that MT2 is greater than MT1 , indicating that the
A-I case is more stable than the A-A case for increasing
depth ratio values, indicating that the fluid layer
dominates the composite layer. Also, when the depth
ratio increases, the Tmns decrease.

The graphs of Tmn’s MT1 and MT2 for varying
porous internal Rayleigh number RIm

 = 0.2, 0.5, 1 and
fixed parameters Da = 0.005, RI = 1, a = 1.3, s = T = 0.5,
f = mp = Ms = 1 are shown in figures 2(a) and 2(b)
respectively. For the A-A and A-I cases, the Tmn’s, MT1
and MT2

 decrease with increas- ing values of RIm. As a
result, increasing this parameter’s value causes the
system to destabilize. The curves diverge, showing that
the effect of this parameter is more pronounced for
higher depth ratio values, i.e. for fluid layer dominated
composite systems.

In figure 3, the effects of fluid internal Rayleigh
number for RI = 0.2, 0.5, 1 and a = 1.3, Da = 0.005, s = T
= 0.5, RIm

 = f = mp
 = Ms = 1 is shown. The Tmn’s, MT1

and MT2 are showing decreasing effect when RI is
increasing which indicates that the system is

Figure 1: Comparison of MT1 and MT2

Figure 2: Effects of RIm

Surface tension driven double diffusive convection
(STDDDC) in a two-layer composite system with
variable heat sources is compared for two thermal
boundary conditions in this work: (i) A-A and (ii) A-I
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Figure 3: Effects of RI

Figure 4: Effects of s

destabilized and so the onset of STDDDC convection
occurs faster. The curves for increasing depth ratios
diverge for both the A-A and A-I cases, demonstrating
that this parameter is important for fluid layer
dominating composite systems.

The variations of solute diffusivity ratio s = 0.1, 0.5,

1 are shown in figure 4 while other physical
parameters a = 1.3, Da = 0.005, T = 0.5, RI = RIm = f = mp
= Ms = 1 are fixed. For larger values of depth ratio, the
curves of MT1 and MT2 converge, indicating that this
parameter is effective for porous dominant composite
systems. As Es increases, MT1 and MT2 decreases, the
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Figure 5: Effects of T

Figure 6: Effects of Da

system is destabilized and hastening the onset of
STDDDC.

In figures 5(a) and 5(b) the effects of thermal
diffusivity ratio T = 0.1, 0.5, 1 on Tmn’s for a = 1.3, Da =
0.005, s = 0.5, RI = RIm = f = mp = Ms = 1 are shown.
Increasing the values of T , MT1 and MT2 increases for 

< 0.5 and decreases for  > 0.5. The range of depth ratio
plays a significant role. Thus, the onset of STDDDC can
be postponed or preponed by choosing suitable range
of depth ratio and thermal diffusivity ratio.

The effects of Darcy number Da = 0.01, 0.005, 0.0001
for fixed parameters a = 1.3, RI = RIm = f = mp = Ms = 1,

Two Component Benard-Marangoni Convection in A Composite System Subjected to Variable Heat Source
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Figure 7: Effects of a

Figure 8: Effects of f

s = T = 0.5 are depicted in figure 6. As Darcy number
increases, MT1 and MT2 decreases thus the onset of
STDDDC is enhanced by stabilizing the system. Also,
the curves in figures 6(a) and 6(b) are widely diverging
for lower depth ratio values  This shows that
the Darcy number is crucial in the porous layer

dominated composite system.
Figure 7 exhibits the effect of a = 1.2, 1.3, 1.45 on Tmn’s

MT1 and MT2 for the fixed parameters T = s = 0.5, Da =
0.005, RI = RIm = f = mp = Ms = 1. Figures 7(a) and 7(b) show
that as a increases, MT1 and MT2 increases as well,
indicating that the system has stabilizing effect.
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Figure 9: Effects of mp

Figure 10: Effects of Ms

In figures 8(a) and 8(b) we can see the variations of
diffusivity ratio f = 0.25, 0.5, 0.75, the solute to thermal
diffusivity ratio in the fluid layer. The Tmn’s MT1 and
MT2 decreases for increase in f , thus destabilizing the
system. Furthermore, the variations of f are noticed
only for smaller  values, i.e. for porous dominated

composite systems.
Figures 9(a) and 9(b) show the impacts of mp, which

is the ratio of solute to thermal diffusivity of the porous
layer. As the depth ratio increases, the curves decline
in the case of A-A, increase in the case of A-I, and
converge at larger depth ratios. Both MT1 and MT2

Two Component Benard-Marangoni Convection in A Composite System Subjected to Variable Heat Source
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decreases with increase in mp which destabilizes the
system so that STDDDC sets in faster.

Figures 10(a) and 10(b) depicts the variations of
solute Marangoni number Ms = 2, 2.5, 3 with respect to
depth ratio for a = 1.3, Da = 0.005, T = s = 0.5, RI = RIm
= f = mp = 1. The Tmn’s MT1 and MT2 increases as Ms
increases, indicating that there is a stabilising
influence on the system, delaying the onset of STDDDC.

5. Conclusions

The effects of two temperature boundary conditions, (i)
A-A and (ii) A-I, on STDDDC for variable heat sources,
are investigated in this study. The findings reveal that:

1. When compared to both insulating surfaces, the
system is more stable for lower isothermal and
upper adiabatic surfaces.

2. For both temperature boundary conditions,
larger internal Rayleigh numbers in both fluid
and porous layers, as well as the solute
diffusivity ratio, have a destabilising effect,
hastening the onset of STDDD convection.

3. For both A-A and A-I situations, higher values
of the solute Marangoni number, Darcy number,
and thermal diffusivity ratio have a stabilising
effect, delaying the onset of STDDDC.
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