Backward Error of Approximate Eigenelements Of a Regular Rational Matrix

Jump To References Section

Authors

  • Department of Mathematics, Sikkim University, Gangtok-737102, Sikkim ,IN

DOI:

https://doi.org/10.18311/jims/2024/31241

Keywords:

Rational matrix, Realization, Matrix polynomial, Eigenvalue, Eigenvector, Fiedler pencil, Linearization, Backward error.
65F15, 15A18, 15B57, 15A22

Abstract

We consider a minimal realization of a rational matrix. We perturb all the coefficients of matrix polynomial and some coefficients from the realization part present in the realization form of rational matrix. We derive explicit computable formulae for backward error of approximate eigenvalues and eigenpairs of regular rational matrix. We also determine minimal perturbations for all the coefficients of matrix polynomial and some coefficients from the realization part for which approximate eigenvalues are exact eigenvalues of the perturbed rational matrix.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-01-01

How to Cite

Behera, N. (2024). Backward Error of Approximate Eigenelements Of a Regular Rational Matrix. The Journal of the Indian Mathematical Society, 91(1-2), 203–216. https://doi.org/10.18311/jims/2024/31241
Received 2022-09-07
Accepted 2023-01-20
Published 2024-01-01

 

References

R. Alam and N. Behera, Linearizations for Rational Matrix Functions and Rosenbrock System Polynomials, SIAM J. Matrix Analysis Appl., 37 (2016), 354 - 380.

R. Alam and N. Behera, Recovery of eigenvectors of rational matrix functions from Fiedler-like linearizations, Linear Algebra Appl., 510 (2016), 373 -394.

R. Alam and N. Behera, Generalized Fiedler pencils for Rational Matrix functions , SIAM J. MATRIX ANAL. APPL., 39 (2018), 587 - 610.

N. Behera, Fiedler linearizations for LTI state-space systems and for rational eigenvalue problems, PhD Thesis, IIT Guwahati, 2014.

N. Behera, Generalized Fiedler pencils with repetition for rational matrix functions, Filomat, 34 (11) (2020), 3529 - 3552.

T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, F. Tisseur, NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39 (2) (2013), 1 - 28.

B. Adhikari and R. Alam, Structured backward errors and pseudospectra of structured matrix pencils, SIAM J. Matrix Anal. Appl., 31 (2009), 331 - 359.

B. Adhikari and R. Alam, On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations, Linear Algebra. Appl., 434 (2011), 1989 - 2017.

C. Conca, J. Planchard and M. Vanninathan, Existence and location of eigenvalues for fluid-solid structures, Comp. Meth. Appl. Mech. Eng., 77 (3) (1989), 253-291.

N. J. Higham, Ren-Cang Li, and F. Tisseur, Backward error of polynomial eigenproblems solved by linearization, SIAM J. Matrix Anal. Appl., 29 (4)(2007), 1218 - 1241.

Froil´an M. Dopico, Mar´ıa C. Quintana, Paul Van Dooren, Structural backward stability in rational eigenvalue problems solved via block Kronecker linearizations, https://arxiv.org/pdf/2103.16395.pdf (2021).

T. Kailath, Linear systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1980.

V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods, GAMM Mitt. Ges. Angew. Math. Mech., 27 (2004), 121 - 152.

D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), 971 - 1004.

L. Mazurenko and H. Voss., Low rank rational perturbations of linear symmetric eigenproblems, Z. Angew. Math. Mech., 86 (8)(2006), 606 - 616.

H. H. Rosenbrock, State-space and multivariable theory, John Wiley & Sons, Inc., New York, 1970.

Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization, SIAM J. Matrix Anal. Appl., 32 (2011), 201 - 216.

F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra and its Applications 309 (2000) 339 - 361.

H. Voss, A rational spectral problem in fluid-solid vibration, Electron. Trans. Numer. Anal., 16 (2003), 93 - 105.

H. Voss, Iterative projection methods for computing relevant energy states of a quantum dot, J. Comput. Phys., 217 (2006), 824 - 833.