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Abstract
PCOS is a common endocrinopathy among women of reproductive age, with a worldwide prevalence of 8 to 13%, depending 
on the criteria used for diagnosis. It is characterized by a constellation of features, including oligo/anovulation, clinical 
and/or biochemical hyperandrogenism, and polycystic ovarian morphology. PCOS is one of the common causes of female 
infertility. It is also associated with metabolic derangements, including obesity, insulin resistance, and compensatory 
hyperinsulinemia, which increase the likelihood of developing type 2 diabetes mellitus. Despite extensive research, the 
etiology of PCOS remains largely unknown. It seems likely that the hypothalamic-pituitary-ovarian axis dysfunction, partial 
folliculogenesis arrest, insulin resistance, and ovarian and adrenal androgen secretion may play a role in the pathogenesis 
of PCOS. Familial clustering of the cases of PCOS points to a genetic component linked with it. The initial genetic studies 
suggest an autosomal dominant pattern of inheritance of the disorder in some families; however, most studies support 
multifactorial origin. Since PCOS is a complex trait, the typical form of inheritance of PCOS follows a non-Mendelian pattern 
and involves complex genetic mechanisms. Studies involving linkage and association have suggested a connection between 
genetic variations and the risk of developing PCOS in certain families or populations. Through genome-wide association 
studies and next-generation sequencing techniques, several candidate genes have been identified that play a role in the 
etiopathogenesis of the disorder. Pathogenic variants of various genes such as INSR, IRS1, GHRL, LDLR, MC4R, ADIPOQ, 
UCP1, UCP2, UCP3, FTO, PCSK9, FBN3, NEIL2, FDFT1, PCSK9, CYP11, CYP17, CYP21, HSD17, STAR, POR, AKR1C3, AMH, AMHR2, 
INHBA, AR, SHBG, LHR, FSHR, FSH β, SRD5A, GATA4, THADA, YAP1, ERBB2, DENND1A, FEM1B, FDFT1, NEIL2, TCF7L2, etc. 
in some PCOS cases are linked as underlying etiologic associations. This review aims to provide insight into the current 
genetic knowledge about PCOS. Discovering the genetic factors and pathways involved in the disorder will help us better 
comprehend the underlying mechanisms of the disorder. 

1.  Introduction
PCOS is a heterogeneous endocrine disorder 
characterized by a combination of symptoms, including 
hyperandrogenism (HA; clinical/biochemical), 
ovarian dysfunction (OD; oligo/anovulation), and/or 
polycystic ovarian morphology (PCOM; polycystic/
enlarged), provided that other possible diagnoses such as 
hyperprolactinemia, non-classical adrenal hyperplasia, 
and thyroid disorders have been ruled out1. The 
prevalence of PCOS ranges from 8 to 13% depending 
on the population studied and definitions used2,3. PCOS 

is associated with notable metabolic and reproductive 
features, including a greater likelihood of developing Type 
2 Diabetes Mellitus (T2DM) at a younger age, impaired 
glucose tolerance, insulin resistance, Cardiovascular 
Disease (CVD), subfertility and an increased risk of 
experiencing symptoms related to depression and 
anxiety4,5. 

Due to the numerous potential diagnostic 
approaches, treatment options, and often contradictory 
recommendations, a global consortium was established 
to thoroughly analyze the evidence and develop 
evidence-based guidelines for diagnosing and managing 
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PCOS which were published in 20186,7. Of the 175 
recommendations in the international guidelines, only 31 
were classified as evidence-based. The current consensus 
in PCOS diagnosis is the Rotterdam criteria with NIH 
2012 phenotypic classifications, i.e., A, B, C, and D. 
Phenotype A requires the presence of all three features 
i.e., HA+OD+PCOM, phenotype B requires HA+OD, 
phenotype C is diagnosed as HA+PCOM, and phenotype 
D manifests as OD+PCOM.

Notably, mapping the susceptibility loci for PCOS has 
been done through Genome-Wide Association Studies 
(GWAS), which identified multiple candidate genes for 
PCOS. These genes include those associated with ovarian 
and adrenal androgen biosynthesis (StAR, CYP21, 
CYP11, CYP17, CYP19), insulin resistance (INSR, IRS2), 
and reproductive hormones and their receptors (LHCGR, 
FSHR, AMH, AMHR2), pointing at the possible role of 
genetic mechanisms in the pathogenesis of PCOS8-13. 

The estimated heritability of PCOS ranges between 
70% to 80% as reported in the twin studies14. However, 
the common susceptibility loci identified through GWAS 
account for only a tiny proportion of the total heritability 
of PCOS15. The presence of rare variants with considerable 
biological effects that are difficult to identify through 
contemporary GWAS has been proposed to explain 
the missing heritability of the disorder16. With high-
throughput sequencing techniques, the simultaneous 
mapping of the genomic regions has made identifying 
pathogenic and disease-causing variants possible17.

PCOS affects all aspects of reproductive and 
neuroendocrine physiology, but the exact pathophysiology 
of the condition is yet to be ascertained. This paper will 
review the current evidence for the leading causes of 
PCOS along with the candidate genes associated with 
the different pathways. An update on the heritability, 
inheritance, and status of PCOS genetics will also be 
provided. 

2.  Inheritance of PCOS 
It is well-known that inherited genetic factors strongly 
influence PCOS. That PCOS could have a genetic 
susceptibility was first suggested in the studies carried out 
in the 1960s, when families with more than one PCOS-
affected woman were reported. These studies observed 
that the genetic susceptibility for PCOS is different among 
the members of the same family18-22. This observation was 
crucial because the mode of inheritance of the disorder 

was unknown. Familial clustering of reproductive features 
of the syndrome was found among the relatives of the 
affected women23-28. The menstrual and hyperandrogenic 
characteristics are common among female siblings and 
their mothers, affecting up to ~40% of reproductive-age 
sisters.

In contrast, hyperandrogenic symptoms appear in 
male siblings in the form of baldness23,25,26. The phenotypic 
similarities between hyperandrogenism and metabolic 
syndromes, such as insulin resistance, were previously 
observed29,30. In the non-Hispanic white women, 
independent and additive defects in insulin action were 
associated with PCOS31. Further investigations revealed 
the presence of insulin receptor mutations in PCOS 
women32,33. It has also been observed that insulin resistance 
and β-cell dysfunction markers are elevated among male 
children who inherit genetic variations related to PCOS 
from their affected mothers34. The same study reported 
elevated levels of circulating AMH in the daughters of 
women with PCOS, regardless of whether they inherited 
genetic factors associated with PCOS, suggesting that 
genetic and epigenetic factors govern PCOS. Occasionally, 
the prevalence of PCOS among identical twins has also 
been reported. A 50% incidence of PCOS has been 
observed among 34 twin pairs studied in an Australian 
study, which, owing to a high discordance in sonographic 
ovarian imaging among twins, suggested a complex 
inheritance pathway and the critical role of environmental 
factors in the genetic transmission mechanism of PCOS35. 
The initial genetic investigations suggest that PCOS has 
an autosomal dominant inheritance pattern, suggesting 
that the disorder is passed down through either sex25,36. 
However, these findings were constrained by a small 
sample size and a failure to examine all the relatives. 
Further studies have, however, revealed that PCOS has a 
multigene origin35.

3.  Heritability
Heritability is defined as the proportion of variation in a trait 
attributable to genetic differences between individuals37. 
Genetic studies are more informative for traits or diseases 
with higher heritability. Twin studies are believed to be a 
good starting point in understanding a trait’s heritability 
because twins share a common environmental milieu 
during their developmental stages38. The easiest way 
to assess the heritability of a trait is by comparing the 
correlations of traits between pairs of Monozygotic (MZ) 



Sharma et al.

Vol 27 (4) | December 2023 | http://www.informaticsjournals.com/index.php/jer/index		   J Endocrinol Reprod. 219

twins, who share identical genetic material, to those of 
dizygotic twins, who share 50% of their genetic material. 
The heritability of PCOS has been estimated from studies 
conducted in various populations (ethnic groups, twins, 
and families with affected women). In 2006, Vink and 
colleagues approximated the heritability of PCOS in an 
extensive study of Dutch twins14. Their diagnostic criteria 
included women who presented with fewer than nine 
menstrual cycles in a year, along with hirsutism or acne. 
The results showed that MZ twins having PCOS defined 
by these criteria had a 0.71 heritability, whereas it was 
0.38 in DZ twins. The overall heritability was estimated 
at 0.79 using a standard pathway model accounting for 
oligomenorrhoea, acne, and hirsutism14. 

Individual hormonal components have been shown 
to be highly heritable through family-based studies. The 
heritability of testosterone, for example, has been observed 
to be 0.26 to 0.50 in women26,39-41. A heritability rate of 
0.44 has been suggested for dehydroepiandrosterone 
sulfate (DHEAS) when correlated with PCOS probands 
and their sisters42. For SHBG, the heritability estimates 
are 0.56 to 0.6326. The heritability of metabolic factors 
such as insulin resistance and BMI has also been observed 
among sisters of women with PCOS26.

4. � Current Status of 
PCOS Genetics: From 
Pathophysiology to Genes

Stein and Leventhal, in the 1930s, described the association 
between polycystic ovarian morphology, infertility, and 
menstrual disturbances43. Many patients experienced 
restoration of regular menstrual cycles through the 
surgical procedure of ovarian wedge resection. This 
finding indicated that ovarian dysfunction plays a vital role 
in the development of the disorder. We now understand 
that PCOS is a complex disorder with varying etiology, 
resulting in intricate pathophysiology and intrinsic 
mechanisms (Figure 1). These mechanisms interact and 
perpetuate the clinical manifestations of PCOS, such 
as hyperandrogenism, Polycystic Ovarian Morphology 
(PCOM), and ovulatory dysfunction. The syndrome is 
further complicated by insulin resistance, aggravated by 
the accumulation and malfunction of adipose tissue related 
to hyperandrogenism, leading to lipotoxicity and oxidative 
stress44. Numerous genetic studies have mainly aimed at 
tracing the genes involved in essential pathways associated 

with PCOS (Figure 2). We review below the various 
gonadotropic, steroidogenic, and metabolic dysfunctions 
and their associated genes with PCOS.

4.1  Gonadotropic Derangements
Under normal circumstances, several hormones, most 
importantly FSH, influence the maturation of immature 
oocytes, while the Luteinizing Hormone (LH) stimulation 
is essential for ovulation and final maturation. Increased 
Gonadotropin-Releasing Hormone (GnRH) pulse 
frequency is a neuroendocrine abnormality frequently 
observed in PCOS, which further leads to increased 
pulse frequency of LH while simultaneously suppressing 
FSH release45. As a result, the circulating LH/FSH 
ratio is increased and is reported to be more prevalent 
among lean PCOS women compared to obese women 
with PCOS46,47. The finding that women with PCOS 
experience heightened LH pulses and increased daytime 
LH pulse secretion at an early stage of puberty suggests 
abnormalities in the pulsatile release of GnRH may 
be responsible for developing PCOS, at least in some 
women48. Hypersecretion of androgens in theca cells of 
ovarian follicles is due to increased LH/FSH ratio and 
resistance to FSH in the ovaries.

Consequently, follicular development is impaired. 
Impaired follicular development reduces the progesterone-
mediated inhibition of GnRH pulse frequency, further 
promoting the development of PCOS. The usual negative 
feedback actions of estradiol and progesterone on the 
hypothalamic GnRH pulse generator are inhibited by 
excess testosterone, which renders the hypothalamus 
insensitive to the inhibitory actions of progesterone and 
estrogen. Testosterone reduces the responsiveness of 
the hypothalamic GnRH pulse generator to the usual 
feedback effects of estradiol and progesterone, which are 
meant to decrease the pulse frequency49. It has been noted 
that elevated levels of LH stimulate excess androgen 
synthesis by decreasing the aromatization of testosterone 
to estrogen in the theca cells of ovaries50,51. 

The LHCGR gene is located on the short arm of 
chromosome 2p16.3 and encodes for both the luteinizing 
hormone receptor and chorionic gonadotropin hormone 
receptor52. It is expressed in the granulosa cells or the 
preovulatory follicles in the ovary and plays an essential 
role in ovulation by transducing luteinizing hormone-
mediated signals53. Loss-of-function mutations in LHCGR 
can lead to elevated levels of LH, menstrual irregularities, 
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and infertility in women. On the contrary, activating 
mutations in LHCGR can result in hyperandrogenism54. 
The 2p16.3 region containing LHCGR loci was found to 
be associated with PCOS risk in a GWAS conducted in 
Han Chinese and European populations55,56. In women of 
Chinese ethnicity, the LHCGR rs13405728 SNP showed 
an association with PCOS. However, the association of the 
same SNP with the disorder was not observed in European 

populations55,57-59. An SNP located nearby in exon 10 
(rs13405728) was studied in the Sardinian population 
and was reported to be linked with the risk of developing 
PCOS60. Recently, the mutant genotype (rs2293275) was 
found to have a 1.7-fold risk of developing PCOS in the 
Indian population61. The data from these genomic studies 
indicate that LHCGR is a potential candidate gene for 
developing PCOS. 

Figure 1.  The proposed pathophysiology and features of PCOS. 

The central abnormality in PCOS is disturbed pulsatility of gonadotropin-releasing hormone (GnRH) which occurs from the hypothalamus, 
consequently leading to excess ovarian androgen secretion and ovarian dysfunction. This hypersecretion of LH is a result of perturbed 
inhibition of progesterone on GnRH secretion. The follicles are more resistant to the effects of FSH in PCOS women, despite the levels of FSH 
being normal. Hyperinsulinemia and insulin resistance further contribute to hyperandrogenic state in PCOS. Adiposity may be caused by a 
vicious cycle where hyperandrogenism promotes the growth of abdominal fat, which in turn encourages further androgen production from 
the ovaries and/or adrenal glands. 

LH (luteinizing hormone); FSH (follicle stimulating hormone); AMH (anti-Mullerian hormone); PCOM (polycystic ovary morphology); 
E2 (estradiol); GnRH (gonadotropin releasing hormone); SHBG (sex hormone-binding globulin); IL6 (interleukin 6); TNF (tumor necrosis 
factor)
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Figure 2.  Genes related to the reproductive hormone and receptors, GnRH pulsatility, androgen biosynthesis and action and 
folliculogenesis, identified through GWAS, candidate-gene studies and next-generation sequencing. Genetic variations in these 
genes may lead to the development of PCOS.

The Follicle-Stimulating Hormone Receptor (FSHR) 
on chromosome 2p21 belongs to the G protein-coupled 
receptor62. Its primary expression is in granulosa cells 
of the ovaries. FSHR plays a crucial role in oogenesis, 
follicle development, and gametogenesis. Upon binding 
with FSH, FSHR stimulates follicle development and 
proliferation of granulosa cells63. The mutations inhibiting 
FSHR gene expression result in hypogonadotropic 
hypogonadism leading to follicle development arrest 
at the preantral stage64. GWAS studies in Han Chinese 
and European populations have reported an association 
between FSHR polymorphism and PCOS10,56,65.

Additionally, the association of two variants in exon 
10 of the FSHR gene Thr307Ala and Asn680Ser have been 
found with PCOS66-69. In a meta-analysis, however, the 
Asn680Ser was strongly associated with PCOS, whereas 

Thr307Ala failed to show any association70. A pathogenic 
intronic variant was recently identified in a whole-exome 
sequencing study conducted in an Indian cohort71. 
Similarly, a heterozygous variant in FSHR (p.Arg283Trp) 
was observed in a recent study on South American 
PCOS women72 (Table 1). There remain significant gaps 
in the knowledge of how the FSHR variants might be 
causing the PCOS phenotype; however, considering the 
polymorphism studies, the FSHR gene can be considered 
a risk factor for PCOS.

The GnRH receptor (GnRHR) is a G-protein coupled 
receptor present in the anterior pituitary’s gonadotroph 
membrane and other tissues like the ovary, placenta, 
breast, and cancerous tissues73,74. Upon binding with 
GnRH, GnRHR activates the phosphatidylinositol-Ca2+ 
second messenger system, which affects LH and FSH 
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synthesis and secretion75. The molecular analysis 
of GnRHR in patients with PCOS showed that it is 
unlikely for a mutation in GnRHR to be responsible for 
the development of PCOS76. It has been documented 
that there is a crosstalk between GnRH signaling and 
the release of Thyroid-Stimulating Hormone (TSH), 
insulin resistance, and insulin signaling in PCOS 
patients77. A comprehensive analysis was conducted 
on a consanguineal family with three sisters diagnosed 
with PCOS using whole exome sequencing78. The study 
confirmed a variant in the GNRHR gene which encodes 
the gonadotropin-releasing hormone receptor, belonging 
to the G-protein coupled receptor family present at the 
surface of pituitary gonadotrope cells. All family members 
were subjected to Sanger sequencing, confirming that the 
p.Q106R variants in the GNRHR gene were homozygous 
in the three affected sisters and heterozygous in parents 
(healthy carriers).

4.2  Ovarian Follicular Arrest 
The disrupted coordination and interaction between LH, 
FSH, AMH and Insulin-Like Growth Factors (IGF1), and 
enzymes involved in androgen conversion, among others, 
contribute to oligo-ovulation (irregular ovulation) or 
anovulation (absence of ovulation) in PCOS79. In PCOS, 
the regular selection of a dominant follicle that proceeds 
to ovulation in each menstrual cycle is hampered due to 
insufficient FSH secretion and local inhibition of FSH 
action80. Follicular FSH resistance may be due to other 
regulators of FSH action within the ovary. One of these 
regulators is the increased levels of AMH in PCOS, which 
reduces the FSH sensitivity of individual ovarian follicles81 
and prevents the conversion of androgen to estrogen by 
inhibiting aromatase activity, thereby contributing to 
hyperandrogenism. Genetic variants in the FSH molecule or 
its receptor might account for differences in FSH sensitivity 
between patients with PCOS and healthy controls82. 

Anti-Mullerian Hormone (AMH) belongs to the 
TGF-β superfamily, exerting its effects through the 
AMHR2 receptors and through Type I receptors ALK1/
ACVR1, ALK3/BMPR1A, or ALK6/BMPR1B, and 
the SMAD1, SMAD5, and SMAD8 proteins, which 
are shared between AMH and Bone Morphogenetic 
Proteins (BMP)83. In females, AMH is expressed by the 
ovaries’ granulosa cells, which regulate folliculogenesis83. 
Elevated circulating levels of AMH arise due to increased 
maturing follicles and the increased synthesis of AMH 
per follicle84. This is particularly true for women with 

anovulatory PCOS, where reduced AMH levels in small 
follicles may promote the recruitment of additional small 
primordial follicles85 However, hypersecretion of AMH 
in granulosa cells of more mature small antral follicles 
could subsequently inhibit further follicular growth by 
impeding FSH and aromatase action81,86. As a result, in 
women with anovulatory PCOS, the levels of circulating 
FSH, although low-to-normal, may not be sufficient to 
overcome the suppression of aromatase activity by AMH 
in the antral follicles87. Notably, the expression of the AMH 
receptor, AMHR2, on the neurons of the hypothalamic 
Gonadotropin-Releasing Hormone (GnRH) has been 
reported in mice and humans88. It has been reported that 
AMH exerts positive feedback on GnRH neuronal firing 
in mice88,89. In this way, AMH can exert extra-gonadal 
actions, leading to the development of PCOS88,89.

Serum AMH is utilized in clinical practice as a 
biomarker of the growing pool of follicles90,91, which directly 
indicates the size of the primordial follicle pool92,93. Thus, 
AMH is also a reliable biomarker of ovarian reserve94-96. Of 
note, serum levels of AMH are increased in women with 
PCOS97-99. Interestingly, PCOS women show 2- to 4-fold 
elevated levels of AMH in both the serum and the follicular 
fluid100. It has been suggested that the increase in the levels 
of AMH occurs both due to the increase in the number 
of small antral follicles, which show the highest expression 
of AMH, and its receptor (AMHR2) by their granulosa 
cells101-102. The abnormal regulation of several hormones 
in PCOS also plays a crucial role in the overexpression of 
AMH and its receptor. The overexpression of AMH and 
AMHR2 can partially be due to androgen excess, one of 
the most prominent diagnostic features of PCOS, as many 
studies have reported a positive correlation between the 
elevated levels of androgens and AMH103-105. Although it has 
been suspected for a long time now that overexpression of 
AMH and AMHR2 are involved in the pathophysiology of 
PCOS, however, studies investigating the single nucleotide 
polymorphisms in the AMH gene have found AMH 
Ile49Ser and AMHR2-482A>G polymorphisms which 
reduce the bioactivity of the enzymes and are associated 
with PCOS106. 

Two studies on the candidate genes for PCOS were 
conducted on AMH and AMHR29,107. The studies focused 
on rare variants (with a minor allele frequency of less than 
1%) in PCOS cases and used AMH-mediated luciferase 
assay to measure their functional impact. Women with 
PCOS often have higher levels of AMH, a crucial factor in 
developing follicles108-110. The study found 37 rare variants 



An Update on the Genetics of Polycystic Ovary Syndrome

Vol 27 (4) | December 2023 | http://www.informaticsjournals.com/index.php/jer/index		   J Endocrinol Reprod.226

specific to PCOS that significantly reduced the signaling 
activity of AMH. These variants were linked to PCOS 
at the population level. In all cases where PCOS was 
present alongside these functional variants, the affected 
individuals were carriers of the variant in only one of 
their gene copies. Five of these AMH variants that had a 
functional impact had been previously identified in men 
with a rare condition called Persistent Mullerian Duct 
Syndrome (PMDS), in which men have both Mullerian 
and Wolffian duct-derived reproductive organs111. It 
has been seen that men with AMH mutations have low 
or undetectable levels of AMH112. In PCOS, however, 
the lack of inhibition of CYP17 by AMH could be a 
contributing factor113. Thus, AMH variants that weakened 
the signaling ability caused a significant reduction in the 
inhibition of CYP17α1 expression compared to the wild-
type AMH. About 6.7% of PCOS cases in these groups 
carried at least one of the rare variants in the AMH/
AMHR2 genes9,107. While higher AMH levels are a more 
common characteristic of PCOS, the studies of rare 
variants suggest that the role of AMH in PCOS is more 
complex than previously believed and may differ among 
women with the disorder. The precise way weakened 
AMH signaling contributes to PCOS needs more research 
to fully understand.

4.3  Hyperandrogenism 
The levels of testosterone and/or androstenedione and/or 
dihydrotestosterone are elevated in the serum of women 
with PCOS114,115. Androgen excess arises mainly due to 
increased androgen synthesis by the theca cells of ovaries, 
which show an upregulated expression of various genes 
involved in steroid biosynthesis116. Overexpression of 
DENND1A, which is a candidate gene for PCOS, has 
been observed in the theca cells obtained from patients 
with PCOS116. Additionally, theca cells show increased 
expression of the CYP17A1 gene, which encodes a rate-
limiting enzyme in androgen biosynthesis. This leads to 
an increased conversion of progesterone precursor to 
androgens116. The theca cells obtained from PCOS patients 
show more responsiveness regarding hyperandrogenism 
to insulin and LH compared to the theca cells isolated from 
control women117. Hyperinsulinemia also contributes 
to androgen excess in PCOS patients by reducing the 
synthesis of SHBG in the liver, thus, leading to increased 
levels of free testosterone in circulation118. 

Although the ovaries are the primary source of 
androgen secretion in PCOS women, about 20% to 30% 

of patients show adrenal androgen excess, which points 
to adrenocortical hyperfunction117. This is because the 
adrenal glands also share the steroidogenic enzymes in 
the theca cells1,3,120. It has also been observed that PCOS 
women show enhanced adrenal sensitivity to ACTH121. 
One of the consequences of androgen excess in PCOS 
is hirsutism. The effect exerted by testosterone and 
dihydrotestosterone through their action on androgen 
receptors stimulates ornithine decarboxylase synthesis 
in the hair follicle, leading to polyamine synthesis. 
Polyamines are essential for cellular proliferation in the 
hair follicle. 

The StAR gene is located on chromosome 8p11.2 and 
encodes a protein that transports cholesterol from the 
outer to the inner mitochondrial membrane in the first 
step of steroidogenesis122-124. In women with PCOS, theca 
cells of the follicles showed increased expression of StAR, 
indicating hyperstimulation of these cells and excess 
androgen production125. However, granulosa cells did not 
show any change in the expression of StAR, suggesting 
that increased responsiveness of granulosa cells to LH 
may contribute to arrested follicle development125. Some 
studies have reported no changes in StAR expression 
in PCOS ovaries compared to healthy ovaries, and 
no correlation between StAR Single Nucleotide 
Polymorphisms (SNPs) and PCOS was found in 
Caucasian126 and Iranian women127. In contrast, research 
led by Jahromi and colleagues has reported increased 
expression of the StAR gene in prenatally androgenized 
rat model and hypomethylation at the promoter region 
of StAR128,129.

Furthermore, a recent study has reported significantly 
increased expression of StAR gene in PCOS rat models 
compared to the control group130. The study also showed 
a positive correlation between StAR gene expression and 
serum testosterone levels130. These studies indicate that 
alterations in the steroidogenesis pathway after exposure 
to excess androgen could be due to changes in the 
expression pattern of the StAR gene.

The gene for sex-hormone globulin is located on 
chromosome 17p13.1131. The hepatocytes mainly produce 
SHBG and have a strong affinity for binding with 
androgens132. It is responsible for regulating the levels 
of sex hormones in the bloodstream and controlling the 
access of target tissues to androgens133. Women with PCOS 
often have high levels of androgens, insulin resistance, 
and hyperinsulinemia, inhibiting the liver’s production 
and release of SHBG134. According to research, low levels 



Sharma et al.

Vol 27 (4) | December 2023 | http://www.informaticsjournals.com/index.php/jer/index		   J Endocrinol Reprod. 227

of SHBG in women with PCOS can cause symptoms of 
hyperandrogenism like access hair growth, acne, male-
pattern baldness, and virilization135-138.

Additionally, certain genetic variations in the SHBG 
gene can affect the levels of SHBG in circulation and may 
play a role in the development of PCOS139,140. Studies 
have found two new mutations in the coding region 
of the SHBG gene141. One of these mutations affects 
glycosylation, while the other leads to truncated synthesis 
of SHBG protein. These mutations result in low SHBG 
levels and increased free testosterone levels in circulation. 
SHBG gene can, thus, be considered as a candidate gene 
playing a crucial role in the development of PCOS.

 The CYP21 (P450c21) gene is located on chromosome 
6p21.3142. The 21-hydroxylase enzyme encoded by this 
gene plays a crucial role in converting C21 steroids 
like progesterone and 21-hydroxyprogesterone into 
11-deoxycorticosterone and 11-deoxycortisol143. The 
adrenal cortex is the leading site where CYP21 is 
expressed, and it is crucial for synthesizing specific 
adrenal steroids like cortisol, corticosterone, and 
aldosterone144,145. The prevalence of heterozygosity of 
mutations in the CYP21A2 gene among women with 
PCOS has been extensively studied. However, the results 
have been contradictory. In a study by Witchel et al.146, 
the prevalence of heterozygous mutations was 35.2% 
among adolescents with hirsutism and/or irregular 
menses and 6% among healthy controls.

Similarly, a study conducted by Escobar-Morreale et 
al.147 showed that 13.3% of the women with ovarian 
hyperandrogenemia were carriers of CYP21A2 mutations. 
In comparison, only 7.7% of the healthy women were 
heterozygous for the same mutations. Additionally, in 
a later study by Witchel et al., 33% of the women in the 
hyperandrogenic group and 7% in the control group 
exhibited heterozygosity in mutations in CYP21A2 
gene148. Decreased or absence of 21-hydroxylase enzyme 
is the cause of non-classical adrenal hyperplasia. Some 
evidence suggests that a single mutation in the CYP21 
gene can result in increased adrenal androgens without 
developing a complete CAH phenotype149. While there 
is a possibility of overlapping symptoms between CAH 
and PCOS, it is that CYP21 has some contribution to the 
pathogenesis of PCOS. 

The CYP11A1 gene belongs to a group of enzymes 
from the cytochrome P450 family located on chromosome 
15q24.1150. These mono-oxygenase enzymes are expressed 
on the inner mitochondrial membrane and play a crucial 

role in steroid biosynthesis, cholesterol metabolism, and 
drug metabolism151. One of the essential functions of these 
enzymes is the conversion of cholesterol to pregnenolone, 
which is the first and rate-limiting step in synthesizing steroid 
hormones152. The expression of the CYP11 gene is found in 
ovaries, kidneys, breasts, testes, and bladder153. Based on 
the linkage review, there is a strong association between the 
pentanucleotide repeat polymorphism (TTTTA)n in the 
CYP11A 5’-UTR and hirsute PCOS patients154. However, 
the association between these pentanucleotide repeats and 
PCOS susceptibility varies among ethnic groups. A recent 
meta-analysis in the Caucasian population found a clear 
link between the microsatellite repeat polymorphism and 
an increased risk of PCOS155. The allele variants of CYP11A 
and its polymorphism related to serum testosterone 
levels might be associated with androgen excess and 
hyperandrogenemia156. The meta-analysis results showed 
a link between PCOS and a particular pentanucleotide 
repeat polymorphism in the promoter region of the 
CYP11A gene157. The studies also indicate that this gene 
is also associated with hirsutism but not with ovulatory 
dysfunction, suggesting that it plays a significant role in 
developing hirsutism in PCOS. Given the importance of 
this gene in the steroidogenesis in the ovary, all the studies 
suggest that the CYP11A gene may be a possible genetic 
biomarker that plays a significant role in the development 
of PCOS. 

The CYP17A1 gene, located on chromosome 10q24.3, 
encodes for an enzyme belonging to the cytochrome P450 
superfamily. They are essential in steroid biosynthesis, 
cholesterol metabolism, and drug metabolism158. The 
P450c17 enzyme has both 17-hydroxylase and 17-lyase 
activities, which catalyzes the conversion of pregnenolone 
to 17-hydroxypregnenolone and progesterone to 
17-hydroxyprogesterone. It cleaves the 17-20 bonds 
to produce C19 steroids dehydroepiandrosterone and 
androstenedione159. The CYP17 gene is mainly expressed 
in the theca cells of the ovaries, which are the site of 
androgen production160,162. The expression of the CYP17 
gene and the enzyme activity is increased in the theca 
cells, in addition to the transactivation of the CYP17 
promoter in women with PCOS162,163.

Furthermore, some studies have reported reduced 
stability of CYP17 mRNA in PCOS patients164. Mutations 
and polymorphisms in this gene have been reported and 
linked with PCOS165-168. Thus, CYP17 is believed to play a 
significant role in developing hyperandrogenic phenotype 
and insulin resistance in PCOS women169,170. 
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The CYP19 gene is located on chromosome 
15q21.1171,172 and is essential for converting C19 
androgens, androstenedione, and testosterone to the C18 
estrogen, estrone, and estradiol173,174. The granulosa cells 
of pre-ovulatory follicles in the ovaries are the primary 
sites of the expression of CYP19 gene175. A reduction 
in aromatase enzyme activity has been reported in 
patients with hyperandrogenism in various studies176,177. 
In addition, a deficiency of aromatase enzyme has been 
observed in both lean and obese women with PCOS. 
Hypermethylation of the promoter region reduces 
the expression of the CYP19 enzyme and the overall 
activity of the aromatase enzyme in PCOS178. Significant 
association of CYP19 rs2414096 has been observed with 
reduced aromatase activity, increased levels of estradiol 
compared to testosterone, androgen excess, and PCOS 
development in African, Caucasian, American, Indian, 
Iraqi, Iranian, Chinese, and Egyptian populations179-184. 
Furthermore, a tetranucleotide repeat polymorphism 
(TTTA)n in the CYP19 gene has been linked to inhibition 
of aromatase activity leading to hyperandrogenism, 
increased testosterone levels, and high LH: FSH ratio in 
PCOS women183,185,186. Thus, the association of decreased 
activity of aromatase enzyme and its association with 
hyperandrogenism suggests a pivotal role of the CYP19 
gene in the pathogenesis of PCOS. 

Androgen receptor (AR) codes for the androgen 
receptor and facilitates the effect of androgens. The AR 
gene is located on the X chromosome and at Xq11-12 
consisting of 11 exons. It has been reported to carry a 
genetic polymorphism in exon one characterized by 
a CAG trinucleotide repeat encoding polyglutamine 
residues187. Elevated androgen levels have been linked 
to impairments in follicle development, menstrual 
irregularities, anovulation, and formation of microcysts 
in the ovaries1,188. Studies in experimental models have 
suggested that exposure to intrauterine androgens can lead 
to developing PCOS later in life189. Recently, inhibition 
of AR expression in mouse models has been shown to 
ameliorate PCOS-like traits190. AR has been identified 
in the theca interna cells of preantral follicles, granulosa 
cells of preantral and antral follicles, and in both theca 
and granulosa cells of dominant follicles191. The genetic 
polymorphism in exon one of the AR gene, characterized 
by CAG repeats, indicates a possible correlation between 
AR activity and PCOS192. In Chinese and Caucasian 
populations, a higher frequency of short AR CAG repeats 
among PCOS women may contribute to the onset of the 

disorder193,194. In addition, this polymorphism results in 
upregulation of AR and increased androgen sensitivity 
in PCOS women195,196. However, no such association 
has been observed in Indian, Korean, Slovene, and 
Croatian populations197-199. Androgen excess not only has 
phenotypic manifestations such as hirsutism and acne, 
but it also has a role in the over-recruitment of follicles, 
which prevents selection of dominant follicles, ultimately 
leading to anovulation200. Reports have suggested that 
androgen regulation in the ovarian follicle depends on 
the follicular phase201. A study by Walters and colleagues 
indicated that in mice with granulosa cell-specific AR 
knockout, there was a considerable extension of estrous 
cycles and a decrease in the number of offspring202. AR 
receptor knockout causes damage to the hypothalamic-
pituitary-gonadal (HPG) axis, resulting in impaired 
follicular development203. In a study by Tian et al., a total 
of five heterozygous missense mutations (p.V3M, p.Q72R, 
p.S158L, p.S176R, and p.G396R) in the androgen receptor 
genes were observed in five out of 258 patients204. It was 
also found that the patients with the pathogenic mutations 
in the AR gene also had significantly lower estrogen levels 
on the day they received human chorionic gonadotropin 
injection204. These findings indicate that AR-mediated 
actions play a critical role in the pathogenesis of PCOS.

GATA binding protein 4 (GATA4) is a transcriptional 
factor that binds to the GATA motifs in the promoter 
regions of genes to control their expression and cell 
differentiation. GATA4 was identified as a potential gene 
associated with PCOS in a Caucasian population through 
GWAS11. However, a meta-analysis of the Caucasian 
population revealed that the association of GATA4 with 
PCOS showed great variance12. It was observed that 
the association was stronger when the patients were 
diagnosed according to NIH criteria as compared to 
the Rotterdam criteria12. On the contrary, a subsequent 
GWAS that examined the variant associations with each 
criterion failed to replicate these findings13. Several 
studies have demonstrated the crucial role of GATA4 in 
ovarian follicle development after selectively knocking out 
the GATA4 gene in granulosa cells205,206. GATA4 also plays 
an essential role in ovarian steroidogenesis by regulating 
the expression of StAR and CYP19 genes207,208. Recently, a 
whole exome sequencing study reported a rare variant of 
uncertain significance (Arg265Cys) in the GATA4 gene 
in a PCOS with abnormal adrenal steroidogenesis72.

Our whole exome sequencing to identify rare, 
pathogenic variants in 51 unrelated PCOS patients 
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reported eight heterozygous exonic variants in genes 
involved in steroid hormone biosynthesis209. These 
included CYP21A2 (p.Ala392Thr, p.Gln319Ter, and 
p.I143N), StAR (p.Arg53 Leu), AKR1C3 (p.Phe205Val), 
P450 oxidoreductase (p.Val334Ile and p.Val251Met) 
and HSD17B6 (p.Gly40Ser) genes, of which two were 
pathogenic. Five variants were identified as having 
uncertain significance in 8 out of 51 patients209. The 
identified variants were predicted to cause protein 
destabilisation, thus likely contributing to the pathogenesis 
of PCOS. Some variants showed significant differences 
between PCOS patients and the population database.

4.4 � Insulin Resistance and Hyperinsulinemia
Under normal circumstances, there is a reduction in insulin 
sensitivity and an increase in insulin secretion, which is 
needed to maintain a constant hyperbolic relationship210. 
Women with PCOS may have an increase in their basal insulin 
secretion211. However, their insulin response to an insulin 
load is generally insufficient, leading to a lower Disposition 
Index than control women of the same age and a Body Mass 
Index (BMI)211-213. Therefore, even though women with 
PCOS experience hyperinsulinemia, they exhibit a relative 
pancreatic β-cells dysfunction118. In addition, women with 
PCOS show reduced removal of insulin by the liver, which 
further contributes to elevated insulin levels214-215.

The molecular mechanisms responsible for insulin 
resistance in PCOS are distinct from those in other 
common conditions characterized by insulin-resistant 
states such as obesity and type 2 diabetes (T2DM). 
Specifically in muscle tissue, an increase in serine 
phosphorylation is observed in the insulin receptor 
and Insulin Receptor Substrate (IRS1)213, which leads to 
compromised insulin signaling and function213,216. PCOS 
women also show abnormalities in insulin function in the 
adipose tissues and adipocytes, although the nature of 
these abnormalities may vary217,218.

The IRS2 gene, on chromosome 13q34, encodes for 
the Insulin Receptor Substrate protein (IRS2), a signaling 
molecule located in the cytoplasm comprising 1354 amino 
acids. IRS2 acts as a molecular adaptor that regulates the 
function of pancreatic islets β-cells and peripheral glucose 
metabolism by facilitating the action of insulin, Insulin-
Like Growth Factor 1 (IGF-1), and other cytokines219. It 
has been observed that women with PCOS, regardless 
of their BMI, may present with insulin resistance 
and hyperinsulinemia220. A meta-analysis showed 
that the IRS1Gly972Arg polymorphism (rs1801278) 

was associated with PCOS in women of Caucasian 
ethnicity, while the IRS2 Gly1057Asp polymorphism 
(rs1805097) was linked with PCOS in women of Asian 
ethnicity221. Furthermore, polymorphisms in the IRS2 
gene contributed to developing type-2 diabetes and other 
metabolic conditions, including obesity and PCOS222. 
Another meta-analysis showed that the A allele of 
Gly972Arg posed a significantly increased risk of PCOS 
compared with the G allele223. A case-control study by 
Pablo et al. found an association between genetic variants 
in the IRS2 gene and variable insulin response to different 
fatty acids and glucose metabolism224. A recent study 
reported that IRS polymorphism rs1865434 may be a risk 
factor in the pathogenesis of PCOS225. 

The insulin receptor (INSR) gene comprises 22 exons 
on chromosome 19226. The knockout of the INSR gene in 
mice leads to extreme insulin resistance227. The significance 
of insulin signaling in PCOS is demonstrated by HAIR-AN 
syndrome (hyperandrogenism, insulin resistance, and 
acanthosis nigricans), a subset of PCOS characterized by 
extreme insulin resistance228. Insulin resistance plays an 
essential role in the up-regulation of LH secretion by the 
pituitary, androgen excess due to increased testosterone 
production by the theca cells, and increased activity 
of P450scc in granulosa cells, which disturb follicular 
development and leads to PCOS220. It has been speculated 
that INSR may be a risk factor for PCOS, as accumulating 
data has shown an association between INSR gene 
polymorphisms and PCOS229. Numerous studies have 
investigated the relationship between polymorphisms in 
the INSR gene and PCOS230,231. Although no association 
was found between INSR polymorphisms and PCOS in 
a meta-analysis, two genome-wide association studies 
in 2011 reported a positive correlation between INSR 
polymorphisms and PCOS8,232,233. The findings from 
another meta-analysis indicated no significant association 
between the SNPs rs1799817 or rs2059806 and the onset 
of PCOS. However, the SNP rs2059807 could be a risk 
factor for PCOS234. These studies point to the INSR gene 
being a potential candidate for the pathogenesis of PCOS. 
Recently, a pathogenic intronic variant in the INSR gene 
was reported in a study from India employed whole-
exome sequencing71,72. Additionally, a heterozygous likely 
pathogenic variant (Tyr1190His) was reported by Crespo et 
al. in a PCOS patient with severe insulin resistance72.

Hence, a limited number of genes, including  FSHR, 
LHCGR, AMH, AMHR, CYP11, CYP21, CYP19, StAR, 
GNRHR, INSR, and IRS, have been consistently replicated 



An Update on the Genetics of Polycystic Ovary Syndrome

Vol 27 (4) | December 2023 | http://www.informaticsjournals.com/index.php/jer/index		   J Endocrinol Reprod.230

in a good number of populations and yielded significant 
association with PCOS.

5.  Conclusion
Advances in understanding the genetic basis of PCOS 
have furthered our knowledge of the etiology of the 
disorder. Various candidate genes associated with PCOS 
that affect the reproductive and metabolic pathways are 
identified using genetic studies. An additional area of 
further exploration is the functional analysis of pathogenic 
variants and their relevance to biology in predicting 
response to standard treatments for PCOS women. These 
are also crucial molecular markers for pharmacogenomic 
studies. There is a need for studies that may encompass 
genomics, cell biology, and clinical research for conveying 
this knowledge to the clinical practice. 
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